Mapping soil nutrients via different covariates combinations: theory and an example from Morocco

Author:

John KingsleyORCID,Bouslihim Yassine,Isong Isong Abraham,Hssaini Lahcen,Razouk Rachid,Kebonye Ndiye M.,Agyeman Prince C.,Penížek Vit,Zádorová Tereza

Abstract

Abstract Background Mapping of soil nutrients using different covariates was carried out in northern Morocco. This study was undertaken in response to the region's urgent requirement for an updated soil map. It aimed to test various covariates combinations for predicting the variability in soil properties using ordinary kriging and kriging with external drift. Methods A total of 1819 soil samples were collected at a depth of 0–40 cm using the 1-km grid sampling method. Samples were screened for their pH, soil organic matter (SOM), potassium (K2O), and phosphorus (P2O5) using standard laboratory protocols. Terrain attributes (T) computed using a 30-m resolution digital elevation model, bioclimatic data (C), and vegetation indices (V) were used as covariates in the study. Each targeted soil property was modeled using covariates separately and then combined (e.g., pH ~ T, pH ~ C, pH ~ V, and pH ~ T + C + V). k = tenfold cross-validation was applied to examine the performance of each employed model. The statistical parameter RMSE was used to determine the accuracy of different models. Results The pH of the area is slightly above the neutral level with a corresponding 7.82% of SOM, 290.34 ppm of K2O, and 100.86 ppm of P2O5. This was used for all the selected targeted soil properties. As a result, the studied soil properties showed a linear relationship with the selected covariates. pH, SOM, and K2O presented a moderate spatial autocorrelation, while P2O5 revealed a strong autocorrelation. The cross-validation result revealed that soil pH (RMSE = 0.281) and SOM (RMSE = 9.505%) were best predicted by climatic variables. P2O5 (RMSE = 106.511 ppm) produced the best maps with climate, while K2O (RMSE = 209.764 ppm) yielded the best map with terrain attributes. Conclusions The findings suggest that a combination of too many environmental covariates might not provide the actual variability of a targeted soil property. This demonstrates that specific covariates with close relationships with certain soil properties might perform better than the compilation of different environmental covariates, introducing errors due to randomness. In brief, the approach of the present study is new and can be inspiring to decision-makers in the region and other world areas as well.

Funder

Fakultu Agrobiologie, Potravinových a Prírodních Zdrojů, Česká Zemědělská Univerzita v Praze

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3