Impacts of land use/land cover and climate changes on soil erosion in Muga watershed, Upper Blue Nile basin (Abay), Ethiopia

Author:

Belay TatekORCID,Mengistu Daniel Ayalew

Abstract

Abstract Background Soil erosion is one of the major threats in the Ethiopian highlands. In this study, soil erosion in the Muga watershed of the Upper Blue Nile Basin (Abay) under historical and future climate and land use/land cover (LULC) change was assessed. Future LULC was predicted based on LULC map of 1985, 2002, and 2017. LULC maps of the historical periods were delineated from Landsat images, and future LULC was predicted using the CA–Markov chain model. Precipitation for the future period was projected from six regional circulation models. The RUSLE model was used to estimate the current and future soil erosion rate in Muga watershed. Results The average annual rate of soil erosion in the study area was increased from about 15 t ha−1 year−1 in 1985 to 19 t ha−1 year−1 in 2002, and 19.7 t ha−1 year−1 in 2017. Expansion of crop cultivation and loss of vegetation caused an increase in soil erosion. Unless proper measure is taken against the LULC changes, the rate of soil loss is expected to increase and reach about 20.7 t ha−1 year−1 in 2033. In the 2050s, soil loss is projected to increase by 9.6% and 11.3% under RCP4.5 and RCP8.5, respectively, compared with the baseline period. Thus, the soil loss rate is expected to increase under both scenarios due to the higher erosive power of the future intense rainfall. When both LULC and climate changes act together, the mean annual soil loss rate shows a rise of 13.2% and 15.7% in the future under RCP4.5 and RCP8.5, respectively, which is due to synergistic effects. Conclusions The results of this study can be useful for formulating proper land use planning and investments to mitigate the adverse effect of LULC on soil loss. Furthermore, climate change will exacerbate the existing soil erosion problem and would need for vigorous proper conservation policies and investments to mitigate the negative impacts of climate change on soil loss.

Funder

International Foundation for Science

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3