Physiological responses and algae inhibition of Pontederia cordata to simulated eutrophication and acid rain co-pollution

Author:

Li YanORCID,Qi Xi,Xin Jianpan,Zhao Chu,Tian Runan

Abstract

Abstract Background Eutrophication and acid rain are two threats that many water bodies must contend with. Eutrophication and climate change have accelerated widespread outbreaks of cyanobacterial blooms as both have become more severe. Pontederiacordata, a garden ornamental plant, can inhibit some algae growth and remove total nitrogen (TN) and total phosphorus (TP) from the water. In this study, we investigated how simulated acid rain and eutrophication co-pollution affected P.cordata's growth physiology and ability to inhibit algae growth. Results Under mild eutrophication (2 mg·L−1 TN, 0.4 mg·L−1 TP, and 15 mg·L−1 CODMn) or weak acid rain (pH = 5.0), P.cordata alleviated the degree of cell membrane lipid peroxidation by stabilizing superoxide dismutase (SOD) and catalase (CAT) activities in the leaves, allowing for normal plant growth. Under mild eutrophication and acid rain conditions, cultured P.cordata water samples maintained strong algae inhibition by reducing the Chl a content and SOD activity of Microcystisaeruginosa cells. Compound stress where acid rain was the primary inhibitory factor along with moderate or severe eutrophication inhibited P.cordata growth, which probably reduced the input of algae-inhibiting allelochemicals, thus reducing its ability to inhibit algae. Conclusions In summary, P. cordata has application potential in mild eutrophic water and acid rain (pH ≥ 4). These findings provide guidance for further research on phytoremediation and algae control in scenarios of compound pollution.

Funder

National Natural Science Foundation of China

Project Funded by China Postdoctoral Science Foundation

Postgraduate Research &Practice Innovation Program of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3