Split nitrogen fertilizer application improved grain yield in winter wheat (Triticum aestivum L.) via modulating antioxidant capacity and 13C photosynthate mobilization under water-saving irrigation conditions

Author:

Zhang Zhen,Yu Zhenwen,Zhang Yongli,Shi Yu

Abstract

AbstractA water-saving cultivation technique of supplementary irrigation based on soil moisture levels has been adopted for winter wheat production in the Huang-Huai-Hai Plain of China, due to the enhanced water-use efficiency. However, appropriate split nitrogen management may further improve crop growth and grain yield. Here, we conducted a 2-year field experiment to determine if split nitrogen management might improve wheat productivity by enhancing 13C photosynthate mobilization and the antioxidant defense system under water-saving conditions. Split nitrogen management involved a constant total nitrogen rate (240 kg ha−1) split in four different proportions between sowing and jointing stage, i.e., 10:0 (N1), 7:3 (N2), 5:5 (N3), and 3:7 (N4). The N3 treatment significantly enhanced “soil-plant analysis development” values, superoxide dismutase antioxidant activity, soluble protein content, sucrose content, and sucrose phosphate synthetase activity, although it reduced the accumulation of malondialdehyde (MDA). The N3 treatment ultimately increased the amount of dry matter assimilation after anthesis significantly. In addition, the 13C isotope tracer experiment revealed that the N3 treatment promoted the assimilation of carbohydrates after anthesis and their partitioning to the developing grains. Compared to the unequal ratio treatments (N1, N2, and N4), the equal ratio treatment (N3) increased grain yield by 5.70–16.72% via increasing 1000-grain weight and number of grains per spike in both growing seasons. Therefore, we recommend the use of a 5:5 basal-topdressing split nitrogen fertilizer application under water-saving irrigation conditions to promote antioxidant enzyme activity and the remobilization of photosynthate after anthesis for improving wheat grain yield.

Funder

National Natural Science Foundation of China

Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences and Peking Union Medical College

Ministry of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3