Trajectories in nitrogen availability during forest secondary succession: illustrated by foliar δ15N

Author:

Tu Ying,Wang Ang,Zhu Feifei,Gurmesa Geshere Abdisa,Hobbie Erik A.,Zhu Weixing,Fang YuntingORCID

Abstract

Abstract Background Forest succession is an important ecological process and has been studied for more than a century. However, changes in nitrogen (N) availability during succession remain unclear as they may lead to either N saturation or N limitation. Here, we propose a conceptual model to illustrate changes in N availability during four stages of secondary succession using the natural abundance of 15N in plant leaves (foliar δ15N). We predicted that N availability would decline in the early stages of succession and then increase in late stages, coinciding with the changes in foliar δ15N, with the inflection point varying in different climate zones. Data on foliar δ15N from 16 succession sequences were synthesized to explore changes in N availability during forest succession. Results The compiled data were consistent with the proposed conceptual model. Foliar δ15N in boreal and temperate forests decreased significantly in the first two stages of succession (estimated to last at least 66 years in temperate forests), at a rate of 0.18‰ and 0.38‰ per decade, respectively, and decreased slightly in tropical forests in the first 23 years. Foliar δ15N is projected to increase in later stages in all forests, which is supported by observations in both temperate and tropical forests. The inflection points of N availability when N limitation peaked during succession were different in different climate zones, implying different ecosystem N turnovers. Conclusions Our study reconciles the controversies regarding changes in N availability during forest secondary succession. Our findings are also useful for predicting the recovery of N and carbon accumulation during succession. Nonetheless, studies on forest secondary succession using foliar δ15N have thus far been limited, and more research should be conducted to further verify the conceptual model proposed here.

Funder

National Key Research and Development Program of China

K.C. Wong Education Foundation

Liaoning Vitalization Talents Program

the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modeling,Ecology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3