Seed nutrient is more stable than leaf in response to changing multiple resources in an alpine meadow

Author:

Li Jiapu,Tian Dashuan,Yu Kailiang,Guo Hongbo,Zhang Ruiyang,Wang Jinsong,Zhou Qingping,Niu Shuli

Abstract

Abstract Background It has been long thought that nitrogen (N), phosphorus (P) concentrations and their ratios (N:P) in metabolically active or functional organs (i.e., leaves) are less responsive to environmental changes. Little attention, however, has been paid to the reproductive organs—seeds, while seeds may maintain their nutrients more stable for the evolutionary fitness of next generation. Methods Here, we conducted a field experiment of N, P addition and drought in an alpine meadow, aiming to compare the difference of leaf and seed nutrients and stoichiometric ratios in response to these resource treatments and their interactions. Four dominant species were selected among grass and forb functional groups, including Elymus nutans, Deschampsia caespitosa, Artemisia roxburghiana and Polygonum viviparum. Results Under natural conditions, leaf N and P concentrations were consistently lower than seed among species. However, leaf nutrients were much more sensitive than seed nutrients to N and P addition. Specifically, N or P addition accordingly increased leaf N or P concentration by 22.20–44.24% and 85.54–93.61%, while only enhanced seed N or P concentration by 5.15–17.20% and 15.17–32.72%, respectively. Leaf N or P concentration was significantly reduced by P or N addition, but seed nutrients remained unchanged. In contrast, drought did not change both organ nutrients. Similarly, nutrient addition and drought had synergistic interactions on leaf nutrients, but not on seed nutrients. Conclusions This study highlights that seed nutrient concentrations could be more stable than metabolically active leaf organ when facing multidimensional resource changes. This complements the traditional view on the ‘Stable Leaf Nutrient Hypothesis’ with the involvement of reproductive organs. The less responsiveness of seed nutrients suggests the adaptive strategy to ensure the success of next generations and long-term plant demographic stability.

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modeling,Ecology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3