Quantifying relations between altered hydrology and fish community responses for streams in Minnesota

Author:

Ziegeweid Jeffrey R.ORCID,Johnson Gregory D.ORCID,Krall Aliesha L.ORCID,Fitzpatrick Kara,Levin Sara B.ORCID

Abstract

Abstract Background Altered hydrology is a stressor on aquatic life, but quantitative relations between specific aspects of streamflow alteration and biological responses have not been developed on a statewide scale in Minnesota. Best subsets regression analysis was used to develop linear regression models that quantify relations among five categories of hydrologic metrics (i.e., duration, frequency, magnitude, rate-of-change, and timing) computed from streamgage records and six categories of biological metrics (i.e., composition, habitat, life history, reproductive, tolerance, trophic) computed from fish-community samples, as well as fish-based indices of biotic integrity (FIBI) scores and FIBI scores normalized to an impairment threshold of the corresponding stream class (FIBI_BCG4). Relations between hydrology and fish community responses were examined using three hydrologic datasets that represented periods of record, long-term changes, and short-term changes to flow regimes in streams of Minnesota. Results Regression models demonstrated significant relations between hydrologic explanatory metrics and fish-based biological response metrics, and the five regression models with the strongest linear relations explained over 70% of the variability in the biological metric using three hydrologic metrics as explanatory variables. Tolerance-based biological metrics demonstrated the strongest linear relations to hydrologic metrics. The most commonly used hydrologic metrics were related to bankfull flows and aspects of flow variability. Conclusions Final regression models represent paired streamgage records and biological samples throughout the State of Minnesota and encompass differences in stream orders, hydrologic landscape units, and watershed sizes. Presented methods can support evaluations of stream fish communities and facilitate targeted efforts to improve the health of fish communities. Methods also can be applied to locations outside of Minnesota with continuous streamgage data and fish-community samples.

Funder

Minnesota Pollution Control Agency Clean Water Legacy Funds

U.S. Geological Survey Cooperative Match Funds

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modeling,Ecology

Reference70 articles.

1. Aertsen W, Kint V, Orshoven J, van Ozkan K, Muys B (2010) Comparison and ranking of different modeling techniques for prediction of site index in Mediterranean mountain forests. Ecol Model 221:1119–1130

2. Annear T, Chisholm I, Beecher H, Locke A, Aarrestad P, Coomer C, Estes C, Hunt J, Jacobson R, Jobsis G, Kauffman J, Marshall J, Mayes K, Smith G, Wentworth R (2004) Instream flows for riverine resource stewardship (revised edition). Instream Flow Council, Cheyenne, WY, USA, 268 p.

3. Archfield SA, Kennen JG, Carlisle DM, Wolock DM (2014) An objective and parsimonious approach for classifying natural flow regimes at a continental scale. River Res App 30:1166–1183. https://doi.org/10.1002/rra.2710

4. Breen R (1996) Regression models: censored, sample selected, or truncated data: Sage University Paper series on Quantitative Applications in the Social Sciences, 07–111, Thousand Oaks, CA

5. Breusch TS, Pagan AR (1979) A simple test for heteroskedasticity and random coefficient variation. Econometrica 47(5):1287–1294. https://doi.org/10.2307/1911963.JSTOR1911963.MR0545960

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3