Abstract
Abstract
Background
Urban heat island (UHI) is an urban climate phenomenon that primarily responds to urban conditions and land use change. The extent of hard surfaces significantly influences the thermal properties of the land. To address this issue, a novel approach quantifying the association between land use and UHI is developed. This study offers a new technique for effectively estimating the effect of land use on the UHI intensity using the combination of urban heat intensity index (UHII) and land contribution index (LCI) derived from Landsat 8 OLI images. The time-series thermal effect of land use on the UHI intensity can be determined according to the ratio in mean temperature between specific land use and the whole study site. The study was conducted in the Hulu Langat district, Malaysia during 2014–2021.
Results
The UHI intensity rose from 0.19 in 2014 to 0.70 in 2021. The negative value of LCI for vegetation areas and water bodies obtained its negative contribution to the urban heat island, while the positive value of LCI for bare areas and built-up areas showed its positive effect on the urban heat island. The LCI value for urban areas showed a significant increase in the 7 years such as 0.51, 0.66, 0.69, and 0.75 for periods 2014, 2016, 2018, and 2021, respectively. The change in LCI from 2014 to 2021 for the transformation of bare area and forest was recorded to be 0.23 and − 0.02, respectively. Thus, the conversion of forests into urban areas had a negative effect on the increment of UHI intensity.
Conclusions
Overall, these findings are useful for policy-making agency in developing an effective policy for reducing high UHI intensity and planning long-term land use management.
Funder
Deanship of Scientific Research, Princess Nourah Bint Abdulrahman University
Publisher
Springer Science and Business Media LLC
Subject
Ecological Modeling,Ecology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献