Grazing effects on vegetation dynamics in the savannah ecosystems of the Sahel

Author:

Gebremedhn Haftay HailuORCID,Ndiaye Ousmane,Mensah SylvanusORCID,Fassinou Cofélas,Taugourdeau Simon,Tagesson Torbern,Salgado Paulo

Abstract

Abstract Background The savannah ecosystems of Sahel have experienced continuous and heavy grazing of livestock for centuries but still, their vegetation response to grazing pressure remains poorly understood. In this study, we analysed the herbaceous plant dynamics, measured by species diversity, composition, cover, and biomass in response to grazing pressure in the savannah ecosystems of Sahel. In Senegal, we selected four savannah sites represented with high, moderate, light and no grazing intensity levels. Transect survey methods were used for sampling the vegetation data within each of the sites. Species richness and composition were analysed using species accumulation curve and multivariate analyses. Furthermore, we used General Linear Models and a piecewise Structural Equation Model (pSEM) to examine the relationships between grazing intensity, vegetation cover, diversity and biomass. Results The herbaceous species diversity and composition varied significantly among the different grazing intensity levels (p <0.001). The plant species composition shifted from the dominance of grass cover to the dominance of forb cover with increasing grazing pressure. Moreover, the attributes of species diversity, herbaceous biomass, and ground cover were higher on sites with low grazing than sites with high and moderate grazing intensity. Across all sites, species diversity was positively related to total biomass. The pSEM explained 37% of the variance in total biomass and revealed that grazing intensity negatively influenced total biomass both directly and indirectly through its negative influence on species diversity. Conclusions Managing grazing intensity may lead to higher plant production and higher mixed forage establishment in the dryland savannah ecosystems. This information can be used to support land management strategies and promote sustainable grazing practices that balance the needs of livestock with the conservation of ecosystem health and biodiversity.

Funder

New Zealand Government to support the objectives of the Global Research Alliance on Agricultural Greenhouse Gases; and CaSSECS project

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3