Abstract
AbstractThe focus of this study was to investigate the wide use of Eucalyptus spp., an exotic plant with high allelopathic ability, in the reforestation programs of urban parks in São Paulo City, Brazil, over the last century. To understand the implications of using Eucalyptus spp. in the city’s parks, this study aimed to compare nutrient cycling and litter decomposition between a mixed composition of litter (i.e., native and exotic species) and the litter of a single species (i.e., Eucalyptus). To accomplish this, newly deciduous leaves were collected from two native and two exotic species that are commonly used in the afforestation of São Paulo as well as from Eucalyptus spp. The mixed composition of litter yielded a higher dry mass loss and return of macro- and micronutrients to the forest floor. The decomposition constant (k) values were 0.00322 and 0.00207 g g−1 day−1 for the mixed composition and Eucalyptus spp., respectively. The time required for decomposition of 50 and 95% of deciduous material was 215 and 931 days, respectively, and for the mixed litterfall 334 and 1449 days, respectively, for Eucalyptus spp. Therefore, the mixed litter exhibited greater dry mass loss and nutrient cycling in an urban forest of São Paulo City, since dry mass losses as well as speed and amount of nutrients returned to the forest floor were relatively higher compared to Eucalyptus spp. Nutrient cycling via Eucalyptus spp. litter was less efficient than mixed composition of litter, demonstrating that reforestation programs carried out in the twentieth century using only one species may have had little success. The results of this work emphasize the fact that in urban reforestation programs the City of São Paulo must consider the environmental and biogeographic characteristics of the species employed and use high levels of biodiversity, since the city lies in a megadiverse biome.
Funder
Fundação de Amparo à Pesquisa do Estado de São Paulo
Publisher
Springer Science and Business Media LLC
Subject
Ecological Modeling,Ecology
Reference85 articles.
1. Adams LW (2005) Urban wildlife ecology and conservation: a brief history of the discipline. Urban Ecosyst 8(2):139–156. https://doi.org/10.1007/s11252-005-4377-7
2. Arratia ALD, Ribeiro AP, Quaresma CC, Rodrigues EA, Lucca EFD, Camargo PBD, Nascimento APB, Ferreira ML (2020) Structure and biomass analysis of urban vegetation in squares of Santa Cecília district, São Paulo, SP. Revista Árvore 44:e4417. https://doi.org/10.1590/1806-908820200000017
3. Asner GP, Martin RE (2015) Convergent elevation trends in canopy chemical traits of tropical forests. Global Change Biol 22(6):2216–2227. https://doi.org/10.1111/gcb.13164
4. Bachega LR, Bouillet JP, Cássia Piccolo M, Saint-André L, Bouvet JM, Nouvellon Y, Laclau JP (2016) Decomposition of Eucalyptus grandis and Acacia mangium leaves and fine roots in tropical conditions did not meet the Home Field Advantage hypothesis. Forest Ecol Manag 359:33–43. https://doi.org/10.1016/j.foreco.2015.09.026
5. Bala N, Pramod K, Bohra NK, Limba NK, Baloch SR, Singh G (2010) Production and decomposition of litter in plantation forests of Eucalyptus camaldulensis along canal command area in Indian desert. Indian Forester 136(2):163–172
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献