Aquatic community structure and stream habitat in a karst agricultural landscape

Author:

Mundahl Neal D.ORCID,Mundahl Erik D.

Abstract

Abstract Background Watersheds dominated by agriculture often have significant, negative impacts on local stream habitats and fauna. Our study examined stream biota and habitats within an entire stream in a karst agricultural landscape to determine if several decades of watershed conservation and management had reversed the severe degradation caused by poor land use and catastrophic soil erosion during the 1920s and 1930s. Results Fish communities and stream habitats were degraded at over half of the 22 stream sites examined, and benthic macroinvertebrate communities were mostly poor throughout the entire stream. Poor fish communities were associated with missing or narrow riparian buffers, high percent fine sediments, high embeddedness of coarse substrates, and homogeneous run habitat. Invertebrate communities were dominated by filter-feeding taxa and those adapted to life on or within fine sediments. Stream sites with wide buffers and influenced by groundwater springs had higher fish community integrity and good to excellent instream habitat. Conclusions Our results suggest that wide riparian buffers and karstic springs may have allowed recovery of some stream reaches, but more extensive buffers and additional soil conservation practices in upland areas likely are necessary to protect most stream segments and their biota from on-going agricultural activities. New state stream buffer laws instituted after this study resulted in establishment of vegetated buffers at all study sites, which may lead to improved stream habitat and biotic communities in future years. Benthic invertebrate community improvement also may require translocation of sensitive taxa from nearby watersheds due to limited dispersal abilities of many species currently absent from the study stream. Increased frequency and intensity of storm events and flooding may hinder future recovery of stream habitats and biota.

Funder

minnesota pollution control agency

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3