Elevated atmospheric CO2 impact on carbon and nitrogen transformations and microbial community in replicated wetland

Author:

Jiang Dawei,Chen Lifei,Xia Nan,Norgbey Eyram,Koomson Desmond Ato,Darkwah Williams KwekuORCID

Abstract

Abstract Background Elevated atmospheric CO2 has direct and indirect influences on ecosystem processes. The impact of elevated atmospheric CO2 concentration on carbon and nitrogen transformations, together with the microbial community, was evaluated with water hyacinth (Eichhornia crassipes) in an open-top chamber replicated wetland. The responses of nitrogen and carbon pools in water and wetland soil, and microbial community abundance were studied under ambient CO2 and elevated CO2 (ambient + 200 μL L−1). Results Total biomass for the whole plant under elevated CO2 increased by an average of 8% (p = 0.022). Wetlands, with water hyacinth, showed a significant increase in total carbon and total organic carbon in water by 7% (p = 0.001) and 21% (p = 0.001), respectively, under elevated CO2 compared to that of ambient CO2. Increase in dissolved carbon in water correlates with the presence of wetland plants since the water hyacinth can directly exchange CO2 from the atmosphere to water by the upper epidermis of leaves. Also, the enrichment CO2 showed an increase in total carbon and total organic carbon concentration in wetland soil by 3% (p = 0.344) and 6% (p = 0.008), respectively. The total nitrogen content in water increased by 26% (p = 0.0001), while total nitrogen in wetland soil pool under CO2 enrichment decreased by 9% (p = 0.011) due to increased soil microbial community abundance, extracted by phospholipid fatty acids, which was 25% larger in amount than that of the ambient treatment. Conclusion The study revealed that the elevated CO2 would affect the carbon and nitrogen transformations in wetland plant, water, and soil pool and increase soil microbial community abundance.

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3