Abstract
Abstract
Background
Nutrient resorption is an important plant nutrient conservation strategy in wetlands. However, how shrub encroachment alters plant nutrient resorption processes is unclear in temperate wetlands. Here, we collected green and senesced leaves of common sedge, grass, and shrub species in wetlands with high (50–65%) and low (20–35%) shrub covers in the Sanjiang Plain of Northeast China, and assessed the impact of shrub encroachment on leaf nitrogen (N) and phosphorus (P) resorption efficiency and proficiency at both plant growth form and community levels.
Results
The effects of shrub cover on leaf nutrient resorption efficiency and proficiency were identical among shrubs, grasses, and sedges. Irrespective of plant growth forms, increased shrub cover reduced leaf N resorption efficiency and proficiency, but did not alter leaf P resorption efficiency and proficiency. However, the effect of shrub cover on leaf nutrient resorption efficiency and proficiency differed between plant growth form and community levels. At the community level, leaf N and P resorption efficiency decreased with increasing shrub cover because of increased dominance of shrubs with lower leaf nutrient resorption efficiency over grasses and sedges. Accordingly, community-level senesced leaf N and P concentrations increased with elevating shrub cover, showing a decline in leaf N and P resorption proficiency. Moreover, the significant relationships between leaf nutrient resorption efficiency and proficiency indicate that shrub encroachment increased senesced leaf nutrient concentrations by decreasing nutrient resorption efficiency.
Conclusions
These observations suggest that shrub encroachment reduces community-level leaf nutrient resorption efficiency and proficiency and highlight that the effect of altered plant composition on leaf nutrient resorption should be assessed at the community level in temperate wetlands.
Funder
National Natural Science Foundation of China
the Double Thousand Plan of Jiangxi Province
Publisher
Springer Science and Business Media LLC
Subject
Ecological Modeling,Ecology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献