Assessment of land use change and its effect on soil carbon stock using multitemporal satellite data in semiarid region of Rajasthan, India

Author:

Sharma Garima,Sharma L. K.,Sharma K. C.

Abstract

Abstract Background Land use change plays a vital role in global carbon dynamics. Understanding land use change impact on soil carbon stock is crucial for implementing land use management to increase carbon stock and reducing carbon emission. Therefore, the objective of our study was to determine land use change and to assess its effect on soil carbon stock in semi-arid part of Rajasthan, India. Landsat temporal satellite data of Pushkar valley region of Rajasthan acquired on 1993, 2003, and 2014 were analyzed to assess land use change. Internal trading of land use was depicted through matrices. Soil organic carbon (SOC) stock was calculated for soil to a depth of 30 cm in each land use type in 2014 using field data collection. The SOC stock for previous years was estimated using stock change factor. The effect of land use change on SOC stock was determined by calculating change in SOC stock (t/ha) by deducting the base-year SOC stock from the final year stock of a particular land use conversion. Results The total area under agricultural lands was increased by 32.14% while that under forest was decreased by 23.14% during the time period of 1993–2014. Overall land use change shows that in both the periods (1993–2003 and 2003–2014), 7% of forest area was converted to agricultural land and about 15% changes occurred among agricultural land. In 1993–2003, changes among agricultural land led to maximum loss of soil carbon, i.e., 4.88 Mt C and during 2003–2014, conversion of forest to agricultural land led to loss in 3.16 Mt C. Conclusion There was a continuous decrease in forest area and increase in cultivated area in each time period. Land use change led to alteration in carbon equity in soil due to change or loss in vegetation. Overall, we can conclude that the internal trading of land use area during the 10-year period (1993–2003) led to net loss of SOC stock by 8.29 Mt C. Similarly, land use change during 11-year period (2003–2014) caused net loss of SOC by 2.76 Mt C. Efforts should be made to implement proper land use management practices to enhance the SOC content.

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modeling,Ecology

Reference55 articles.

1. Allison LE (1975) Organic carbon. In: Black CA (ed) Methods of soil analysis. American Society of Agronomy 2, Madison, pp 1367–1378

2. Amin A, Singh SK (2012) Study of urban land use dynamics in Srinagar city using geospatial approach. Environ Sci Res 1(2):18–24

3. Amundson R (2001) The carbon budget in soils. Annu Rev Earth Planet Sci 29:535–562

4. Bajracharya RM, Sitaula BK, Shrestha BM, Awasthi KD, Balla MK, Singh BR (2004) Soil organic carbon status and dynamics in the central Nepal middle mountains. For J Inst For Nepal 12:2943

5. Bastawesy ME (2014) Hydrological scenarios of the renaissance dam in Ethiopia and its hydro-environmental impact on the Nile downstream. J Hydrol Eng 20:7

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3