Sustainable land management interventions lead to carbon sequestration in plant biomass and soil in a mixed crop-livestock system: the case of Geda watershed, central highlands of Ethiopia

Author:

Terefe HailuORCID,Argaw Mekuria,Tamene Lulseged,Mekonnen Kindu

Abstract

Abstract Background Sustainable land management interventions were introduced in Geda watershed in 2012 to reduce soil erosion, improve water infiltration, and increase plant-carbon inputs into the soil. This study explored the impact of the interventions on biomass production, carbon stock, and carbon sequestration. Stratified sampling was employed in the main and the dry seasons in the treated and untreated sub-watersheds that are found adjacent to each other. Above- and below-ground plant biomass, soil bulk density and organic carbon in 0–15- and 15–30-cm depths, and soil moisture content in 0–20- and 20–40-cm depths were collected from the crop, grazing, and tree lucerne plots. All analyses were performed based on standard procedures. Results Plant biomass production, carbon stock, and carbon sequestration varied highly significantly (P ≤ 0.001) among sub-watersheds, landscape positions, and land uses. Higher mean values were observed for treated sub-watershed, lower landscape position, and tree lucerne plot. The higher mean values in the lower landscape position of the treated sub-watershed were due to tree lucerne plantation. Similarly, topsoil (0–15 cm) carbon stock was statistically higher (P ≤ 0.001) in the treated sub-watershed and at tree lucerne plot (P ≤ 0.05). In addition, carbon stock by sub-surface soil (15–30 cm) was significantly higher (P ≤ 0.001) in the treated sub-watershed under crop and grazing lands but the higher value was in cropland and in the upper position. This could be due to the decomposition of organic materials from biomasses of crops and biological supporting measures (tree lucerne and Phalaris) facilitated by tillage. Six years of sustainable land management interventions led to the sequestration of 12.25, 7.77, and 13.5 Mg C ha−1 under cropland, tree lucerne, and grazing plots, respectively. Conclusion Sustainable land management interventions revealed auspicious ecological impacts in Geda watershed in terms of improving plant biomass production, carbon stock, and correspondingly capturing higher carbon dioxide equivalent taking untreated sub-watershed as a baseline. Prohibition of free grazing was the key element of the intervention to reduce biomass export and increase carbon sequestration in the treated sub-watershed. Thus, sustaining tree lucerne plants as a conservation measure and the prohibition of free grazing practices are principally essential.

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modeling,Ecology

Reference45 articles.

1. Ademe Y, Kebede T, Mullatu A, Shafi T (2017) Evaluation of the effectiveness of soil and water conservation practices on improving selected soil properties in Wonago district, southern Ethiopia. J Soil Sci Environ Manag 8:70–79

2. Adimassu Z, Simon L, Robyn J, Wolde M, Tilahun A (2017) Impacts of soil and water conservation practices on crop yield, run-off, soil loss and nutrient loss in Ethiopia: review and synthesis. Environ Manag 59:87–101

3. Akudugu MA, Alhassan AR (2012) The climate change menace, food security, livelihoods and social safety in northern Ghana. Int J Sustain Dev World Policy 1:80–95

4. Amare T, Birru Y, Hans H (2013) Effects of “Guie” on soil organic carbon and other soil properties: a traditional soil fertility management practice in the central highlands of Ethiopia. J Agric Sci 5:237–244

5. Asante FA, Amuakwa-Mensah F (2015) Climate change and variability in Ghana: stocktaking. Climate 3:78–99

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3