Spatial point-pattern analysis as a powerful tool in identifying pattern-process relationships in plant ecology: an updated review

Author:

Ben-Said MariemORCID

Abstract

Abstract Background Ecological processes such as seedling establishment, biotic interactions, and mortality can leave footprints on species spatial structure that can be detectable through spatial point-pattern analysis (SPPA). Being widely used in plant ecology, SPPA is increasingly carried out to describe biotic interactions and interpret pattern-process relationships. However, some aspects are still subjected to a non-negligible debate such as required sample size (in terms of the number of points and plot area), the link between the low number of points and frequently observed random (or independent) patterns, and relating patterns to processes. In this paper, an overview of SPPA is given based on rich and updated literature providing guidance for ecologists (especially beginners) on summary statistics, uni-/bi-/multivariate analysis, unmarked/marked analysis, types of marks, etc. Some ambiguities in SPPA are also discussed. Results SPPA has a long history in plant ecology and is based on a large set of summary statistics aiming to describe species spatial patterns. Several mechanisms known to be responsible for species spatial patterns are actually investigated in different biomes and for different species. Natural processes, plant environmental conditions, and human intervention are interrelated and are key drivers of plant spatial distribution. In spite of being not recommended, small sample sizes are more common in SPPA. In some areas, periodic forest inventories and permanent plots are scarce although they are key tools for spatial data availability and plant dynamic monitoring. Conclusion The spatial position of plants is an interesting source of information that helps to make hypotheses about processes responsible for plant spatial structures. Despite the continuous progress of SPPA, some ambiguities require further clarifications.

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modelling,Ecology

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3