Effects of sulfuric, nitric, and mixed acid rain on the decomposition of fine root litter in Southern China

Author:

Liu Xin,Meng Miaojing,Zhang Yong,Li Chong,Ma Shilin,Li Qinyu,Ren Qiong,Zhang Yinlong,Zhang Jinchi

Abstract

Abstract Background China has been increasingly subject to significant acid rain, which has negative impacts on forest ecosystems. Recently, the concentrations of NO3 in acid rain have increased in conjunction with the rapid rise of nitrogen deposition, which makes it difficult to precisely quantify the impacts of acid rain on forest ecosystems. Methods For this study, mesocosm experiments employed a random block design, comprised of ten treatments involving 120 discrete plots (0.6 m × 2.0 m). The decomposition of fine roots and dynamics of nutrient loss were evaluated under the stress of three acid rain analogues (e.g., sulfuric (SO42−/NO3 5:1), nitric (1:5), and mixed (1:1)). Furthermore, the influences of soil properties (e.g., soil pH, soil total carbon, nitrogen, C/N ratio, available phosphorus, available potassium, and enzyme activity) on the decomposition of fine roots were analyzed. Results The soil pH and decomposition rate of fine root litter decreased when exposed to simulated acid rain with lower pH levels and higher NO3 concentrations. The activities of soil enzymes were significantly reduced when subjected to acid rain with higher acidity. The activities of soil urease were more sensitive to the effects of the SO42−/NO3 (S/N) ratio of acid rain than other soil enzyme activities over four decomposition time periods. Furthermore, the acid rain pH significantly influenced the total carbon (TC) of fine roots during decomposition. However, the S/N ratio of acid rain had significant impacts on the total nitrogen (TN). In addition, the pH and S/N ratio of the acid rain had greater impacts on the metal elements (K, Ca, and Al) of fine roots than did TC, TN, and total phosphorus. Structural equation modeling results revealed that the acid rain pH had a stronger indirect impact (0.757) on the decomposition rate of fine roots (via altered soil pH and enzyme activities) than direct effects. However, the indirect effects of the acid rain S/N ratio (0.265) on the fine root decomposition rate through changes in soil urease activities and the content of litter elements were lower than the pH of acid rain. Conclusions Our results suggested that the acid rain S/N ratio exacerbates the inhibitory effects of acid rain pH on the decomposition of fine root litter.

Funder

Postdoctoral Science Foundation of Jiangsu Province

China Postdoctoral Science Foundation

Jiangsu Agriculture Science and Technology Innovation Fund

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modeling,Ecology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3