Taxonomic dependency and spatial heterogeneity in assembly mechanisms of bacteria across complex coastal waters

Author:

Yan Huizhen,Lin Dandan,Gu Gaoke,Huang Yujie,Hu Xuya,Yu Zhenhao,Hou Dandi,Zhang Demin,Campbell Barbara J.,Wang KaiORCID

Abstract

Abstract Background Understanding community assembly mechanisms across taxa and space is fundamental for microbial ecology. However, the variability and determinants of assembly processes over taxa and space remain unclear. Here, we investigated taxonomic dependency and spatial heterogeneity in bacterial assembly mechanisms across coastal waters in the East China Sea using neutral and null models with customized visualization strategies. Results Overall, bacterial assembly mechanisms varied across broad taxonomic groups (phyla and proteobacterial classes) and space at the regional scale. A determinism–stochasticity balanced mechanism governed total bacterial assembly, while taxonomic dependency existed in assembly mechanisms and ecological processes. Among community ecological features, niche breadth and negative-to-positive cohesion ratio were strongly associated with the determinism-to-stochasticity ratio of bacterial groups. Bacterial assembly mechanisms commonly exhibited spatial heterogeneity, the extent and determinants of which varied across taxonomic groups. Spatial assembly of total bacteria was directly driven by many environmental factors and potential interactions between taxa, but not directly by geographic factors. Overall, the bacterial groups with higher spatial heterogeneity in assembly mechanisms were more related to environmental and/or geographic factors (except Bacteroidetes), while those with lower heterogeneity were more related to ecological features. Conclusions Our results confirm the pervasiveness of taxonomic dependency and spatial heterogeneity in bacterial assembly, providing a finer understanding about regulation across complex coastal waters.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Ningbo

Fundamental Research Funds for the Provincial Universities of Zhejiang

Zhejiang Provincial Natural Science Foundation of China

Graduate Research Innovation Fund in Ningbo University

K. C. Wong Magna Fund in Ningbo University

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3