Abstract
Abstract
Background
The subbasin hydrologic behaviors have been altered by many natural and anthropologic factors such as climate change and land development activities. Model-based assessment can be used to simulate both natural hydrological processes, human-induced effects, and management strategies on water resources. For the Ketar subbasin, the WEAP (water evaluation and planning) hydrologic model was developed that aimed at (1) evaluating the application of the WEAP model in the Ketar subbasin, (2) evaluating the demonstration of the WEAP model using model efficiency evaluation criteria, and (3) simulating hydrological processes of the subbasin using the WEAP model.
Methods
WEAP-based soil moisture method (rainfall-runoff) hydrology routine is comprised of a lumped, one-dimensional, two-layer soil water accounting that uses empirical functions to designate evapotranspiration, surface runoff, interflow, and deep percolation for a sub-unit at root zone. A catchment is considered as the smallest hydrologic response unit. The catchment’s surface hydrological balance is typically estimated by discretizing the catchment into multiple land uses for which water balance is estimated at root zone.
Results
The monthly measured and simulated streamflow statistics showed a positive strong relationship with R2 of 0.82, NSE of 0.80, and IA of 0.95; and with R2 of 0.91, NSE of 0.91, and IA of 0.98 for calibration and validation periods respectively. Similarly, the mean monthly measured and simulated streamflow showed an agreement with R2 of 0.99, NSE of 0.97, and IA of 0.99, and R2 of 0.94, NSE of 0.93, and IA of 0.93 for the periods of calibration and validation respectively.
Conclusion
The model has demonstrated the capability to represent the hydrologic dynamics of the subbasin both at monthly and mean monthly periods. In general, the overall model performance evaluation statistics show a very good agreement between measured and simulated streamflow at the outlet of the subbasin.
Publisher
Springer Science and Business Media LLC
Subject
Ecological Modeling,Ecology
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献