Changing climate patterns risk the spread of Varroa destructor infestation of African honey bees in Tanzania

Author:

Giliba Richard A.ORCID,Mpinga Issa H.,Ndimuligo Sood A.,Mpanda Mathew M.

Abstract

Abstract Background Climate change creates opportune conditions that favour the spread of pests and diseases outside their known active range. Modelling climate change scenarios is oftentimes useful tool to assess the climate analogues to unveil the potential risk of spreading suitability conditions for pests and diseases and hence allows development of appropriate responses to address the impending challenge. In the current study, we modelled the impact of climate change on the distribution of Varroa destructor, a parasitic mite that attacks all life forms of honey bees and remains a significant threat to their survival and productivity of bee products in Tanzania and elsewhere. Methods The data about the presence of V. destructor were collected in eight regions of Tanzania selected in consideration of several factors including potentials for beekeeping activities, elevation (highlands vs. lowlands) and differences in climatic conditions. A total of 19 bioclimatic datasets covering the entire country were used for developing climate scenarios of mid-century 2055 and late-century 2085 for both rcp4.5 and rcp8.5. We thereafter modelled the current and future risk distribution of V. destructor using MaxEnt. Results The results indicated a model performance of AUC = 0.85, with mean diurnal range in temperature (Bio2, 43.9%), mean temperature (Bio1, 20.6%) and mean annual rainfall (Bio12, 11.7%) as the important variables. Future risk projections indicated mixed responses of the potential risk of spreads of V. destructor, exhibiting both decrease and increases in the mid-century 2055 and late-century 2085 on different sites. Overall, there is a general decline of highly suitable areas of V. destructor in mid- and late-century across all scenarios (rcp4.5 and rcp8.5). The moderately suitable areas indicated a mixed response in mid-century with decline (under rcp4.5) and increase (under rcp8.5) and consistent increase in late century. The marginally suitable areas show a decline in mid-century and increase in late-century. Our results suggest that the climate change will continue to significantly affect the distribution and risks spread of V. destructor in Tanzania. The suitability range of V. destructor will shift where highly suitable areas will be diminishing to the advantage of the honey bees’ populations, but increase of moderately suitable sites indicates an expansion to new areas. The late century projections show the increased risks due to surge in the moderate and marginal suitability which means expansion in the areas where V. destructor will operate. Conclusion The current and predicted areas of habitat suitability for V. destructor’s host provides information useful for beekeeping stakeholders in Tanzania to consider the impending risks and allow adequate interventions to address challenges facing honey bees and the beekeeping industry. We recommend further studies on understanding the severity of V. destructor in health and stability of the honey bees in Tanzania. This will provide a better picture on how the country will need to monitor and reduce the risks associated with the increase of V. destructor activities as triggered by climate change. The loss of honey bees’ colonies and its subsequent impact in bees’ products production and pollination effect have both ecological and economic implications that need to have prioritization by the stakeholders in the country to address the challenge of spreading V. destructor.

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3