Relating environmental variables with aquatic community structure in an agricultural/urban coldwater stream

Author:

Myers Daniel T. L.ORCID,Rediske Richard R.ORCID,McNair James N.ORCID,Parker Aaron D.,Ogilvie E. Wendy

Abstract

Abstract Background Urban areas are often built along large rivers and surrounded by agricultural land. This may lead to small tributary streams that have agricultural headwaters and urbanized lower reaches. Our study objectives assessed are as follows: (1) landscape, geomorphic, and water quality variables that best explained variation in aquatic communities and their integrity in a stream system following this agricultural-to-urban land use gradient; (2) ways this land use gradient caused aquatic communities to differ from what would be expected for an idealized natural stream or other longitudinal gradients; and (3) whether the impacts of this land use gradient on aquatic communities would grow larger in a downstream direction through the agricultural and urban developments. Our study area was an impaired coldwater stream in Michigan, USA. Results Many factors structured the biological communities along the agricultural-to-urban land use gradient. Instream woody debris had the strongest relationship with EPT (Ephemeroptera, Plecoptera, and Trichoptera) abundance and richness and were most common in the lower, urbanized watershed. Fine streambed substrate had the strongest relationship with Diptera taxa and surface air breather macroinvertebrates and was dominant in agricultural headwaters. Fish community assemblage was influenced largely by stream flow and temperature regimes, while poor fish community integrity in lower urban reaches could be impacted by geomorphology and episodic urban pollution events. Scraping macroinvertebrates were most abundant in deforested, first-order agricultural headwaters, while EPT macroinvertebrate richness was the highest downstream of agricultural areas within the urban zone that had extensive forest buffers. Conclusion Environmental variables and aquatic communities would often not conform with what we would expect from an idealized natural stream. EPT richness improved downstream of agricultural areas. This shows promise for the recovery of aquatic systems using well-planned management in watersheds with this agricultural-to-urban land use pattern. Small patches of forest can be the key to conserving aquatic biodiversity in urbanized landscapes. These findings are valuable to an international audience of researchers and water resource managers who study stream systems following this common agricultural-to-urban land use gradient, the ecological communities of which may not conform with what is generally known about land use impacts to streams.

Funder

Grand Valley State University Graduate School

Annis Water Resources Institute

Lower Grand River Organization of Watersheds

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modelling,Ecology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3