Response mechanism of soil microorganisms to simulated precipitation in the source wetland of Qinghai Lake

Author:

Wang Xinye,Zhang Ni,Chen Kelong,Chen Tiexi,Qi Desheng,Ma Yuanxi

Abstract

Abstract Background Changes in precipitation patterns crucially impact soil microbial communities, and the ecosystem in Qinghai-Tibet Plateau (QTP) is highly vulnerable to climate change. However, we do not fully understand how soil microbial communities in the source wetlands of QTP respond to changes in precipitation. In this study, we employed advanced techniques such as high-throughput sequencing and metabolomics to investigate how soil microbial communities in a source wetland of Qinghai Lake respond to changes in precipitation after quadrennial precipitation treatment. Results Our findings showed that the predominant microbiota in the source wetland was Proteobacteria. Interestingly, alterations in precipitation levels, whether increased or reduced, did not significantly impact the diversity or functional groups of the microbial community. However, the structure of the microbial community did respond notably to changes in precipitation, leading to shifts in the relative abundance of Spirochaetes and Treponema. A notable finding was that reduced precipitation levels (– 25% and − 50%) and mild increases in precipitation (25%) within the region contributed to increased soil carbon content. However, this effect ceased to manifest when precipitation increased by 50%. Additionally, the reduction in precipitation prompted the release of soil metabolites like syringic acid and aldosterone, while enhanced precipitation resulted in a decrease in aldosterone content. Conclusions Precipitation changes altered the relative abundance of soil microbial communities and metabolites, which was conducive to increasing carbon storage in this alpine wetland.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3