Author:
Wang Xinye,Zhang Ni,Chen Kelong,Chen Tiexi,Qi Desheng,Ma Yuanxi
Abstract
Abstract
Background
Changes in precipitation patterns crucially impact soil microbial communities, and the ecosystem in Qinghai-Tibet Plateau (QTP) is highly vulnerable to climate change. However, we do not fully understand how soil microbial communities in the source wetlands of QTP respond to changes in precipitation. In this study, we employed advanced techniques such as high-throughput sequencing and metabolomics to investigate how soil microbial communities in a source wetland of Qinghai Lake respond to changes in precipitation after quadrennial precipitation treatment.
Results
Our findings showed that the predominant microbiota in the source wetland was Proteobacteria. Interestingly, alterations in precipitation levels, whether increased or reduced, did not significantly impact the diversity or functional groups of the microbial community. However, the structure of the microbial community did respond notably to changes in precipitation, leading to shifts in the relative abundance of Spirochaetes and Treponema. A notable finding was that reduced precipitation levels (– 25% and − 50%) and mild increases in precipitation (25%) within the region contributed to increased soil carbon content. However, this effect ceased to manifest when precipitation increased by 50%. Additionally, the reduction in precipitation prompted the release of soil metabolites like syringic acid and aldosterone, while enhanced precipitation resulted in a decrease in aldosterone content.
Conclusions
Precipitation changes altered the relative abundance of soil microbial communities and metabolites, which was conducive to increasing carbon storage in this alpine wetland.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献