Discovering social determinants of health from case reports using natural language processing: algorithmic development and validation

Author:

Raza Shaina,Dolatabadi Elham,Ondrusek Nancy,Rosella Laura,Schwartz Brian

Abstract

Abstract Background Social determinants of health are non-medical factors that influence health outcomes (SDOH). There is a wealth of SDOH information available in electronic health records, clinical reports, and social media data, usually in free text format. Extracting key information from free text poses a significant challenge and necessitates the use of natural language processing (NLP) techniques to extract key information. Objective The objective of this research is to advance the automatic extraction of SDOH from clinical texts. Setting and data The case reports of COVID-19 patients from the published literature are curated to create a corpus. A portion of the data is annotated by experts to create ground truth labels, and semi-supervised learning method is used for corpus re-annotation. Methods An NLP framework is developed and tested to extract SDOH from the free texts. A two-way evaluation method is used to assess the quantity and quality of the methods. Results The proposed NER implementation achieves an accuracy (F1-score) of 92.98% on our test set and generalizes well on benchmark data. A careful analysis of case examples demonstrates the superiority of the proposed approach in correctly classifying the named entities. Conclusions NLP can be used to extract key information, such as SDOH factors from free texts. A more accurate understanding of SDOH is needed to further improve healthcare outcomes.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Connecting Fairness in Machine Learning with Public Health Equity;2023 IEEE 11th International Conference on Healthcare Informatics (ICHI);2023-06-26

2. Leveraging Foundation Models for Clinical Text Analysis;2023 IEEE 11th International Conference on Healthcare Informatics (ICHI);2023-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3