Author:
Alizadeh Morad,Cordeiro Gauss M.,Brito Edleide de,B. Demétrio Clarice Garcia
Abstract
Abstract
We study general mathematical properties of a new generator of continuous distributions with three extra shape parameters called the beta Marshall-Olkin family. We present some special models and investigate the asymptotes and shapes. The new density function can be expressed as a mixture of exponentiated densities based on the same baseline distribution. We derive a power series for its quantile function. Explicit expressions for the ordinary and incomplete moments, quantile and generating functions, Bonferroni and Lorenz curves, Shannon and Rényi entropies and order statistics, which hold for any baseline model, are determined. We discuss the estimation of the model parameters by maximum likelihood and illustrate the flexibility of the family by means of two applications to real data. PACS 02.50.Ng, 02.50.Cw, 02.50.-r Mathematics Subject Classification (2010) 62E10, 60E05, 62P99
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,Computer Science Applications,Statistics and Probability
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献