Abstract
Abstract
Background
Severe acute respiratory syndrome coronavirus 2 (SARS‐COV‐2) is mostly associated with upper and lower respiratory tract manifestations. However, coronavirus disease 19 (COVID-19) can result in a wide range of other systemic symptomatology, including neuropsychiatric, psychological, and psychosocial impairments. Literature regarding neurological compromise, including neuropathy and sensory and motor affection associated with COVID-19, is still limited.
This study aims to evaluate the sensory, motor neuropathy, and secondary neurological impairment among patients with mild to moderate coronavirus disease associated with peripheral neuropathy within 1 month.
Methods
Forty participants, including 20 mild to moderate COVID-19 patients with peripheral neuropathy and 20 age and gender-matched healthy volunteers, were recruited in this case/control study. Laboratory evaluation focused on C-reactive protein (CRP) and D-dimer levels. Oxygen saturation for all participants was recorded. The neurophysiological study included motor nerve study, sensory nerve study, and F wave study for upper and lower limbs were done.
Results
The two groups were similar regarding baseline data. Neurological symptoms’ onset in the COVID-19 group ranged from 4 to 24 days. Levels of CRP and D-dimer levels were significantly higher in patients versus the control group. Motor nerve conduction (MNC) amplitude and latency for the median nerve were significantly compromised among the COVID-19 group. The MNC latency and F wave latency for the posterior tibial nerve were significantly higher in the COVID-19 group. The CRP and D-dimer levels were associated with a significant positive correlation with a latency of median nerve MNC, sensory nerve conduction (SNC), and f-wave; latency of MNC and F wave of the posterior tibial nerve; and SNC latency for sural nerve.
Conclusion
neurological involvement can occur in mild to moderate cases of SARS-COV-2 infection and add to the burden of the disease. Neurological symptoms in the course of COVID-19 disease should be interpreted cautiously, and appropriate diagnosis, including nerve conduction studies and management, should be considered.
Trial registration
ClinicalTrials.gov. NCT05721040.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science,General Medicine
Reference23 articles.
1. Di Gennaro F, Pizzol D, Marotta C, Antunes M, Racalbuto V, Veronese N, Smith L (2020) Coronavirus diseases (COVID-19) current status and future perspectives: a narrative review. Int J Environ Res Public Health 17(8):2690
2. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L (2020) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 395(10223):507–13
3. Desforges M, Le Coupanec A, Dubeau P, Bourgouin A, Lajoie L, Dubé M et al (2019) Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system. Viruses 12(1):14
4. Andalib S, Biller J, Di Napoli M, Moghimi N, McCullough LD, Rubinos CA, O’HanaNobleza C, Azarpazhooh MR, Catanese L, Elicer I, Jafari M (2021) Peripheral nervous system manifestations associated with COVID-19. Curr Neurol Neurosci Rep 21:1–4
5. Koskderelioglu A, Eskut N, Ortan P, Ozdemir HO, Tosun S (2022) Visual evoked potential and nerve conduction study findings in patients recovered from COVID-19. Neurol Sci 1:1–9
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献