Abstract
AbstractAs an extension of the finite element method, the virtual element method (VEM) can handle very general polygonal meshes, making it very suitable for non-matching meshes. In (Wriggers et al. in Comput. Mech. 58:1039–1050, 2016), the lowest-order virtual element method was applied to solve the contact problem of two elastic bodies on non-matching meshes. The numerical experiments showed the robustness and accuracy of the virtual element scheme. In this paper, we establish a priori error estimate of the virtual element method for the contact problem and prove that the lowest-order VEM achieves linear convergence order, which is optimal.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference43 articles.
1. Andersson, L.E.: A quasistatic frictional problem with normal compliance. Nonlinear Anal. 16, 347–369 (1991)
2. Antonietti, P.F., Beirão da Veiga, L., Mora, D., Verani, M.: A stream function formulation of the Stokes problem for the virtual element method. SIAM J. Numer. Anal. 52, 386–404 (2014)
3. Antonietti, P.F., Beirão da Veiga, L., Scacchi, S., Verani, M.: A $C^{1}$ virtual element method for the Cahn–Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54, 34–56 (2016)
4. Atkinson, K., Han, W.: Theoretical Numerical Analysis: A Functional Analysis Framework, 3rd edn. Springer, New York (2009)
5. Beirão da Veiga, L., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51, 794–812 (2013)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献