Author:
Dhanraj Menaha,Gnanaprakasam Arul Joseph,Kumar Santosh
Abstract
AbstractIn this paper, we initiate the fixed point theorems for an orthogonal hybrid interpolative Riech Istrastescus type contractions map on orthogonal b-metric spaces to modify this class proficiently. Also, we provide some examples supporting our main results. Finally, we provide an application to solve the existence and uniqueness of an integral equation with numeric results, which is powerful in a greater way.
Publisher
Springer Science and Business Media LLC
Reference39 articles.
1. Banach, S.: Sur les operations dans les ensembles abstraits et leurs applications aux equations integrals. Fundam. Math. 3, 133–181 (1922)
2. Ali, M.U., Kamran, T., Din, F., Anwar, M.: Fixed and common fixed point theorems for Wardowski type mappings in uniform spaces. UPB Sci. Bull., Ser. A 80, 1–12 (2018)
3. Hardy, G.E., Rogers, T.D.: A generalization of a fixed point theorem of Reich. Can. Math. Bull. 16, 201–206 (1973)
4. He, L., Cui, Y.-L., Ceng, L.-C., Zhao, T.-Y., Wang, D.-Q., Hu, H.-Y.: Strong convergence for monotone bilevel equilibria with constraints of variational inequalities and fixed points using subgradient extragradient implicit rule. J. Inequal. Appl. 2021, Article ID 146 (2021)
5. Ceng, L.-C., Wen, C.-F., Liou, Y.-C., Yao, J.-C.: A general class of differential hemivariational inequalities systems in reflexive Banach spaces. Mathematics 9, Article ID 3173 (2021)