Abstract
AbstractWe establish a fixed point theorem for the composition of nonconvex, measurable selection valued correspondences with Banach space valued selections. We show that if the underlying probability space of states is nonatomic and if the selection correspondences in the composition are K-correspondences (meaning correspondences having graphs that contain their Komlos limits), then the induced measurable selection valued composition correspondence takes contractible values and therefore has fixed points. As an application we use our fixed point result to show that all nonatomic uncountable-compact discounted stochastic games have stationary Markov perfect equilibria – thus resolving a long-standing open question in game theory.
Funder
Economic and Social Research Council
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Geometry and Topology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献