Radio-anatomical evaluation of clinical and radiomic profile of multi-parametric magnetic resonance imaging of de novo glioblastoma multiforme

Author:

Ahmed H. ShafeeqORCID,Devaraj Trupti,Singhvi Maanini,Dasan T. Arul,Ranganath Priya

Abstract

Abstract Background Glioblastoma (GBM) is a fatal, fast-growing, and aggressive brain tumor arising from glial cells or their progenitors. It is a primary malignancy with a poor prognosis. The current study aims at evaluating the neuroradiological parameters of de novo GBM by analyzing the brain multi-parametric magnetic resonance imaging (mpMRI) scans acquired from a publicly available database analysis of the scans. Methods The dataset used was the mpMRI scans for de novo glioblastoma (GBM) patients from the University of Pennsylvania Health System, called the UPENN-GBM dataset. This was a collection from The Cancer Imaging Archive (TCIA), a part of the National Cancer Institute. The MRIs were reviewed by a single diagnostic radiologist, and the tumor parameters were recorded, wherein all recorded data was corroborated with the clinical findings. Results The study included a total of 58 subjects who were predominantly male (male:female ratio of 1.07:1). The mean age with SD was 58.49 (11.39) years. Mean survival days with SD were 347 (416.21) days. The left parietal lobe was the most commonly found tumor location with 11 (18.96%) patients. The mean intensity for T1, T2, and FLAIR with SD was 1.45E + 02 (20.42), 1.11E + 02 (17.61), and 141.64 (30.67), respectively (p =  < 0.001). The tumor dimensions of anteroposterior, transverse, and craniocaudal gave a z-score (significance level = 0.05) of − 2.53 (p = 0.01), − 3.89 (p < 0.001), and 1.53 (p = 0.12), respectively. Conclusion The current study takes a third-party database and reduces physician bias from interfering with study findings. Further prospective and retrospective studies are needed to provide conclusive data.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3