Author:
James Spencer L,Flaxman Abraham D,Murray Christopher JL
Abstract
Abstract
Background
Verbal autopsies provide valuable information for studying mortality patterns in populations that lack reliable vital registration data. Methods for transforming verbal autopsy results into meaningful information for health workers and policymakers, however, are often costly or complicated to use. We present a simple additive algorithm, the Tariff Method (termed Tariff), which can be used for assigning individual cause of death and for determining cause-specific mortality fractions (CSMFs) from verbal autopsy data.
Methods
Tariff calculates a score, or "tariff," for each cause, for each sign/symptom, across a pool of validated verbal autopsy data. The tariffs are summed for a given response pattern in a verbal autopsy, and this sum (score) provides the basis for predicting the cause of death in a dataset. We implemented this algorithm and evaluated the method's predictive ability, both in terms of chance-corrected concordance at the individual cause assignment level and in terms of CSMF accuracy at the population level. The analysis was conducted separately for adult, child, and neonatal verbal autopsies across 500 pairs of train-test validation verbal autopsy data.
Results
Tariff is capable of outperforming physician-certified verbal autopsy in most cases. In terms of chance-corrected concordance, the method achieves 44.5% in adults, 39% in children, and 23.9% in neonates. CSMF accuracy was 0.745 in adults, 0.709 in children, and 0.679 in neonates.
Conclusions
Verbal autopsies can be an efficient means of obtaining cause of death data, and Tariff provides an intuitive, reliable method for generating individual cause assignment and CSMFs. The method is transparent and flexible and can be readily implemented by users without training in statistics or computer science.
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health,Epidemiology
Cited by
80 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献