Simulation of mode conversion from UHR-mode wave to LO-mode wave in an inhomogeneous plasma with different wave normal angles

Author:

Kalaee Mohammad Javad,Ono Takayuki,Katoh Yuto,Iizima Masahide,Nishimura Yukitoshi

Abstract

Abstract We have investigated a linear mode conversion process among UHR-mode, Z-mode, and LO-mode waves by a computer simulation solving Maxwell’s equations and the motion of a cold electron fluid. The characteristics of the wave coupling process occurring in the cold magnetized plasma were examined in detail for the case of an inhomogeneity of plasma density lying perpendicular to the ambient magnetic field. The dependence of the conversion efficiency on the incident wave normal angle, wave frequency, background plasma frequency, and steepness of density gradient was studied. The results show that an efficient mode conversion occurred in the conversion process from Z-mode to LO-mode waves rather than from the coupling between UHR-mode to LO-mode waves. They also show that the highest conversion efficiency was obtained under the specific condition of the wave normal angle for the incident waves. In the specific case of such critical wave normal angles, we found that perpendicular components of refractive indexes became zero at the site of mode conversion, which is consistent with previously published results. We also show that the range of the critical normal angle varied depending on both the plasma frequency and the wave frequency. The simulation results also reveal that, when the steepness of the density gradient was taken into consideration, efficient mode conversion could be expected even in the case of the mismatch of the refractive indexes preventing the close coupling of plasma waves.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3