Cardiac patients’ surgery outcome and associated factors in Ethiopia: application of machine learning

Author:

Tadege Melaku,Tegegne Awoke Seyoum,Dessie Zelalem G.

Abstract

Abstract Introduction Cardiovascular diseases are a class of heart and blood vessel-related illnesses. In Sub-Saharan Africa, including Ethiopia, preventable heart disease continues to be a significant factor, contrasting with its presence in developed nations. Therefore, the objective of the study was to assess the prevalence of death due to cardiac disease and its risk factors among heart patients in Ethiopia. Methods The current investigation included all cardiac patients who had cardiac surgery in the country between 2012 and 2023. A total of 1520 individuals were participated in the study. Data collection took place between February 2022 and January 2023. The study design was a retrospective cohort since the study track back patients’ chart since 2012. Machine learning algorithms were applied for data analysis. For machine learning algorithms comparison, lift and AUC was applied. Results From all possible algorithms, logistic algorithm at 90%/10% was the best fit since it produces the maximum AUC value. In addition, based on the lift value of 3.33, it can be concluded that the logistic regression algorithm was performing well and providing substantial improvement over random selection. From the logistic regression machine learning algorithms, age, saturated oxygen, ejection fraction, duration of cardiac center stays after surgery, waiting time to surgery, hemoglobin, and creatinine were significant predictors of death. Conclusion Some of the predictors for the death of cardiac disease patients are identified as such special attention should be given to aged patients, for patients waiting for long periods of time to get surgery, lower saturated oxygen, higher creatinine value, lower ejection fraction and for patients with lower hemoglobin values.

Publisher

Springer Science and Business Media LLC

Reference51 articles.

1. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R. Ahn SYJTl: global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of Disease Study 2010. 2012, 380(9859):2095–128.

2. Yin M, Augustin B, Fu Z, Yan M, Fu A, Yin, PJSr. Geographic distributions in hypertension diagnosis, measurement, prevalence, awareness, treatment and control rates among middle-aged and older adults in China. 2016, 6(1):1–11.

3. McAloon CJ, Boylan LM, Hamborg T, Stallard N, Osman F, Lim PB. Hayat SAJIjoc: The changing face of cardiovascular disease 2000–2012: An analysis of the world health organisation global health estimates data. 2016, 224:256–264.

4. Yeates K, Lohfeld L, Sleeth J, Morales F, Rajkotia Y, Ogedegbe O. A global perspective on cardiovascular disease in vulnerable populations. Can J Cardiol. 2015;31(9):1081–93.

5. Remenyi B, Carapetis J, Wyber R, Taubert K, Mayosi BM. Position statement of the World Heart Federation on the prevention and control of rheumatic heart disease. Nat Reviews Cardiol. 2013;10(5):284.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3