Novel NARS2 variants in a patient with early-onset status epilepticus: case study and literature review

Author:

Yang Nuo,Chen Limin,Zhang Yanfeng,Wu Xuemei,Hao Yunpeng,Yang Fan,Yang Zuozhen,Liang JianminORCID

Abstract

Abstract Background NARS2 as a member of aminoacyl-tRNA synthetases was necessary to covalently join a specific tRNA to its cognate amino acid. Biallelic variants in NARS2 were reported with disorders such as Leigh syndrome, deafness, epilepsy, and severe myopathy. Case presentation Detailed clinical phenotypes were collected and the NARS2 variants were discovered by whole exome sequencing and verified by Sanger sequencing. Additionally, 3D protein structure visualization was performed by UCSF Chimera. The proband in our study had early-onset status epilepticus with abnormal EEG and MRI results. She also performed global developmental delay (GDD) and myocardial dysfunction. Next-generation sequencing (NGS) and Sanger sequencing revealed compound heterozygous missense variants [NM_024678.6:exon14: c.1352G > A(p.Arg451His); c.707T > C(p.Phe236Ser)] of the NARS2 gene. The proband develops refractory epilepsy with GDD and hyperlactatemia. Unfortunately, she finally died for status seizures two months later. Conclusion We discovered two novel missense variants of NARS2 in a patient with early-onset status epilepticus and myocardial dysfunction. The NGS enables the patient to be clearly diagnosed as combined oxidative phosphorylation deficiency 24 (COXPD24, OMIM:616,239), and our findings expands the spectrum of gene variants in COXPD24.

Funder

the Natural Science Foundation of Jilin Province

the National Nature and Science Foundation of China

the Foundation of Jilin Provincial Key Laboratory of Pediatric Neurology

the Project of Jilin Provincial Science and Technology Development Plan

the Project of Jilin Medical and Health Talents

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3