Predicting the serum digoxin concentrations of infants in the neonatal intensive care unit through an artificial neural network

Author:

Yao Shu-Hui,Tsai Hsiang-Te,Lin Wen-Lin,Chen Yu-Chieh,Chou Chiahung,Lin Hsiang-WenORCID

Abstract

Abstract Background Given its narrow therapeutic range, digoxin’s pharmacokinetic parameters in infants are difficult to predict due to variation in birth weight and gestational age, especially for critically ill newborns. There is limited evidence to support the safety and dosage requirements of digoxin, let alone to predict its concentrations in infants. This study aimed to compare the concentrations of digoxin predicted by traditional regression modeling and artificial neural network (ANN) modeling for newborn infants given digoxin for clinically significant patent ductus arteriosus (PDA). Methods A retrospective chart review was conducted to obtain data on digoxin use for clinically significant PDA in a neonatal intensive care unit. Newborn infants who were given digoxin and had digoxin concentration(s) within the acceptable range were identified as subjects in the training model and validation datasets, accordingly. Their demographics, disease, and medication information, which were potentially associated with heart failure, were used for model training and analysis of digoxin concentration prediction. The models were generated using backward standard multivariable linear regressions (MLRs) and a standard backpropagation algorithm of ANN, respectively. The common goodness-of-fit estimates, receiver operating characteristic curves, and classification of sensitivity and specificity of the toxic concentrations in the validation dataset obtained from MLR or ANN models were compared to identify the final better predictive model. Results Given the weakness of correlations between actual observed digoxin concentrations and pre-specified variables in newborn infants, the performance of all ANN models was better than that of MLR models for digoxin concentration prediction. In particular, the nine-parameter ANN model has better forecasting accuracy and differentiation ability for toxic concentrations. Conclusion The nine-parameter ANN model is the best alternative than the other models to predict serum digoxin concentrations whenever therapeutic drug monitoring is not available. Further cross-validations using diverse samples from different hospitals for newborn infants are needed.

Funder

Ministry of Science and Technology

China Medical University

Publisher

Springer Science and Business Media LLC

Subject

Pediatrics, Perinatology, and Child Health

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3