Delineating morbidity patterns in preterm infants at near-term age using a data-driven approach

Author:

Ciora Octavia-AndreeaORCID,Seegmüller Tanja,Fischer Johannes S.ORCID,Wirth Theresa,Häfner FriederikeORCID,Stoecklein Sophia,Flemmer Andreas W.,Förster KaiORCID,Kindt AlidaORCID,Bassler Dirk,Poets Christian F.,Ahmidi NargesORCID,Hilgendorff AnneORCID

Abstract

Abstract Background Long-term survival after premature birth is significantly determined by development of morbidities, primarily affecting the cardio-respiratory or central nervous system. Existing studies are limited to pairwise morbidity associations, thereby lacking a holistic understanding of morbidity co-occurrence and respective risk profiles. Methods Our study, for the first time, aimed at delineating and characterizing morbidity profiles at near-term age and investigated the most prevalent morbidities in preterm infants: bronchopulmonary dysplasia (BPD), pulmonary hypertension (PH), mild cardiac defects, perinatal brain pathology and retinopathy of prematurity (ROP). For analysis, we employed two independent, prospective cohorts, comprising a total of 530 very preterm infants: AIRR (“Attention to Infants at Respiratory Risks”) and NEuroSIS (“Neonatal European Study of Inhaled Steroids”). Using a data-driven strategy, we successfully characterized morbidity profiles of preterm infants in a stepwise approach and (1) quantified pairwise morbidity correlations, (2) assessed the discriminatory power of BPD (complemented by imaging-based structural and functional lung phenotyping) in relation to these morbidities, (3) investigated collective co-occurrence patterns, and (4) identified infant subgroups who share similar morbidity profiles using machine learning techniques. Results First, we showed that, in line with pathophysiologic understanding, BPD and ROP have the highest pairwise correlation, followed by BPD and PH as well as BPD and mild cardiac defects. Second, we revealed that BPD exhibits only limited capacity in discriminating morbidity occurrence, despite its prevalence and clinical indication as a driver of comorbidities. Further, we demonstrated that structural and functional lung phenotyping did not exhibit higher association with morbidity severity than BPD. Lastly, we identified patient clusters that share similar morbidity patterns using machine learning in AIRR (n=6 clusters) and NEuroSIS (n=8 clusters). Conclusions By capturing correlations as well as more complex morbidity relations, we provided a comprehensive characterization of morbidity profiles at discharge, linked to shared disease pathophysiology. Future studies could benefit from identifying risk profiles to thereby develop personalized monitoring strategies. Trial registration AIRR: DRKS.de, DRKS00004600, 28/01/2013. NEuroSIS: ClinicalTrials.gov, NCT01035190, 18/12/2009.

Funder

Bavarian Ministry for Economic Affairs, Regional Development and Energy as part of a project to support the thematic development of the Fraunhofer Institute for Cognitive Systems IKS

German Center for Lung Research (DZL) (Federal Ministry of Education and Research in Germany

Research Training Group 'Targets in Toxicology' of the German Research Foundation

Young Investigator Grant NWG by the Helmholtz Foundation and the Helmholtz Zentrum Munich, Germany

Stiftung AtemWeg / Life Science – Stiftung

Transregional Collaborative Research Center ’Perinatal Development of Immune Cell Topology (PILOT)’, German Research Foundation

Fraunhofer-Institut für Kognitive Systeme IKS

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3