Abstract
Abstract
Background
The gut microbiota and the brain are connected through different mechanisms. Bacterial colonisation of the gut plays a substantial role in normal brain development, providing opportunities for nutritional neuroprotective interventions that target the gut microbiome. Preterm infants are at risk for brain injury, especially white matter injury, mediated by inflammation and infection. Probiotics, prebiotics and L-glutamine are nutritional components that have individually already demonstrated beneficial effects in preterm infants, mostly by reducing infections or modulating the inflammatory response. The NutriBrain study aims to evaluate the benefits of a combination of probiotics, prebiotics and L-glutamine on white matter microstructure integrity (i.e., development of white matter tracts) at term equivalent age in very and extremely preterm born infants.
Methods
This study is a double-blind, randomised, controlled, parallel-group, single-center study. Eighty-eight infants born between 24 + 0 and < 30 + 0 weeks gestational age and less than 72 h old will be randomised after parental informed consent to receive either active study product or placebo. Active study product consists of a combination of Bifidobacterium breve M-16V, short-chain galacto-oligosaccharides, long-chain fructo-oligosaccharides and L-glutamine and will be given enterally in addition to regular infant feeding from 48 to 72 h after birth until 36 weeks postmenstrual age. The primary study outcome of white matter microstructure integrity will be measured as fractional anisotropy, assessed using magnetic resonance diffusion tensor imaging at term equivalent age and analysed using Tract-Based Spatial Statistics. Secondary outcomes are white matter injury, brain tissue volumes and cortical morphology, serious neonatal infections, serum inflammatory markers and neurodevelopmental outcome.
Discussion
This study will be the first to evaluate the effect of a combination of probiotics, prebiotics and L-glutamine on brain development in preterm infants. It may give new insights in the development and function of the gut microbiota and immune system in relation to brain development and provide a new, safe treatment possibility to improve brain development in the care for preterm infants.
Trial registration
ISRCTN, ISRCTN96620855. Date assigned: 10/10/2017.
Funder
Ministerie van Economische Zaken
Provincie Utrecht
Gemeente Utrecht
Publisher
Springer Science and Business Media LLC
Subject
Pediatrics, Perinatology and Child Health
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献