Abstract
Abstract
Background
Congenital heart defect is the leading malformation in China. There may have been changes in congenital heart defect incidence because of birth policy shift in China over past years. This study aimed to investigate the epidemiology, prenatal diagnosis, and outcomes of congenital heart disease to improve medical and policy decisions.
Methods
Data on cases of congenital heart disease identified during 2014–2018 were taken from the Zhejiang provincial birth defects surveillance system. Chi-square test, odds ratio (OR) and 95% confidence interval (CI) were used to explore epidemiology, prenatal diagnosis, and birth outcomes of congenital heart disease.
Results
The average incidence of congenital heart disease was 16.0 per 1000 births, which increased by 62.2% during 2014–2018(χ2trend = 181.41, P < 0.001). However, the average critical congenital heart incidence was 1.6 per 1000 births, which remained stable over time. Women aged ≤20 years (OR2.1, 95% CI 1.9–2.3) or ≥ 35 years (OR 1.2, 95% CI 1.2–1.3) were at higher risk of having babies with congenital heart disease than women aged 21–34 years. Women who gave birth in urban areas (OR 1.2, 95% CI 1.2–1.3), had a son (OR 1.3, 95% CI 1.3–1.4), or had multiple births (OR 4.0, 95% CI 3.7–4.4) were also at higher risk than those giving birth in rural areas, to girls, or single births, respectively. The three major subtypes of congenital heart disease were atrial septal defect (67.9%), patent ductus arteriosus (34.7%), and ventricular septal defect (6.4%). The prenatal detection rate of critical congenital heart disease was 90.0%, which was far higher than total congenital heart disease, at 22.2% (χ2 = 1687.67, P < 0.001). There were 1457 (17.1%) stillbirths, 106 (1.2%) early neonatal deaths, and 6983 (81.7%) live births associated with congenital heart disease.
Conclusions
The high incidence of congenital heart disease in Zhejiang might be attributable to the large proportion of mild congenital heart disease. The incidence of critical congenital heart disease, the prenatal detection rate, and perinatal deaths from congenital heart disease are comparable to those in other studies.
Funder
National Key Scientific Instrument and Equipment Development Projects of China
Publisher
Springer Science and Business Media LLC
Subject
Pediatrics, Perinatology, and Child Health
Reference36 articles.
1. Mai CT, Isenburg JL, Canfield MA, Meyer RE, Correa A, Alverson CJ, Lupo PJ, Riehle-Colarusso T, Cho SJ, Aggarwal D, et al. National population-based estimates for major birth defects, 2010-2014. Birth Defects Res. 2019;111(18):1420–35.
2. Centers for Disease Control and Prevention. Data and statistics on congenital heart defects. https://www.cdc.gov/ncbddd/heartdefects/data.html. Accessed 12 Nov 2019.
3. EUROCAT. UK congenital anomaly register prevalence tables. 2015. http://www.eurocat-network.eu/accessprevalencedata/prevalencetables. Accessed 29 July 2015.
4. Liu Y, Chen S, Zuhlke L, Black GC, Choy MK, Li N, Keavney BD. Global birth prevalence of congenital heart defects 1970-2017: updated systematic review and meta-analysis of 260 studies. Int J Epidemiol. 2019;48(2):455–63.
5. Sun R, Liu M, Lu L, Zheng Y, Zhang P. Congenital heart disease: causes, diagnosis, symptoms, and treatments. Cell Biochem Biophys. 2015;72(3):857–60.
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献