Author:
Yu Uet,Chen Li,Wang Xiaodong,Zhang Xiaoling,Li Yue,Wen Feiqiu,Liu Sixi
Abstract
Abstract
Background
In young children, β-thalassemia major (β-TM) is associated with potentially severe clinical characteristics, including poor growth, feeding difficulties, hepatosplenomegaly, bone metabolic disorders, and skeletal abnormalities.
Methods
In this study, we reviewed the demographic and clinical characteristics (e.g., age, sex, duration of blood transfusion and chelating therapy, and vitamin supplementation) and serum biomarker levels (e.g., iron accumulation, bone metabolism, liver, kidney, and thyroid function markers) of 32 patients that received regular blood transfusion at a single center in southern China with the aim of stratifying the risk of severe complications such as osteopenia, endocrinopathies, and multi-organ failures.
Results
Although all patients exhibited moderately to strongly elevated serum ferritin levels, this biomarker was significantly higher in children older than ≥5 years, compared to younger children (*p < 0.05, 1512 ± 192.6 vs. 2337 ± 299.8 ng/ml, Mann-Whitney U test). Older children had a significantly lower 25-hydroxy vitamin D3 (25(OH)D3) level, compared to younger children (**p < 0.01, 34.25 ± 11.06 vs. 23.05 ± 9.95 ng/ml, Mann-Whitney U test). No age-related differences were observed in serum calcium, phosphorus, and PTH levels. Regarding liver function, the serum alanine aminotransferase (ALT) level was significantly increased in children older than ≥5 years, compared to younger children (*p < 0.05, 19.17 ± 2.44 vs. 43.45 ± 9.82I U/ml, Mann-Whitney U test). However, no age-related differences were observed in the serum levels of other liver or kidney and thyroid biomarkers.
Conclusions
Our results suggest that in older children, hepatic iron overload may be associated with a low serum concentration of 25(OH)D3, an indicator of vitamin D deficiency and altered bone metabolism. Iron accumulation may also be associated with a higher concentration of ALT, a sensitive marker of liver malfunction. These findings may provide important clinical indications of the need for intervention to prevent severe complications in children with β thalassemia.
Funder
Sanming Project of Medicine in Shenzhen
Publisher
Springer Science and Business Media LLC
Subject
Pediatrics, Perinatology, and Child Health
Reference33 articles.
1. Galanello R, Origa R. Beta-thalassemia. Orphanet J Rare Dis. 2010;5:11.
https://doi.org/10.1186/1750-1172-5-11
.
2. Needs T, Lynch DT (2018) Beta thalassemia. In: StatPearls. StatPearls publishing StatPearls publishing LLC., Treasure Island (FL),
3. Fahim FM, Saad K, Askar EA, Eldin EN, Thabet AF. Growth parameters and vitamin D status in children with thalassemia major in upper Egypt. Int J Hematol Oncol Stem Cell Res. 2013;7(4):10–4.
4. Chuansumrit A, Pengpis P, Mahachoklertwattana P, Sirachainan N, Poomthavorn P, Sungkarat W, Kadegasem P, Khlairit P, Wongwerawattanakoon P. Effect of Iron chelation therapy on glucose metabolism in non-transfusion-dependent Thalassaemia. Acta Haematol. 2017;137(1):20–6.
https://doi.org/10.1159/000450673
.
5. Kuo KH, Mrkobrada M. A systematic review and meta-analysis of deferiprone monotherapy and in combination with deferoxamine for reduction of iron overload in chronically transfused patients with beta-thalassemia. Hemoglobin. 2014;38(6):409–21.
https://doi.org/10.3109/03630269.2014.965781
.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献