Assessing the role of redox partners in TthLPMO9G and its mutants: focus on H2O2 production and interaction with cellulose

Author:

Chorozian Koar,Karnaouri Anthi,Georgaki-Kondyli Nefeli,Karantonis Antonis,Topakas Evangelos

Abstract

Abstract Background The field of enzymology has been profoundly transformed by the discovery of lytic polysaccharide monooxygenases (LPMOs). LPMOs hold a unique role in the natural breakdown of recalcitrant polymers like cellulose and chitin. They are characterized by a “histidine brace” in their active site, known to operate via an O2/H2O2 mechanism and require an electron source for catalytic activity. Although significant research has been conducted in the field, the relationship between these enzymes, their electron donors, and H2O2 production remains complex and multifaceted. Results This study examines TthLPMO9G activity, focusing on its interactions with various electron donors, H2O2, and cellulose substrate interactions. Moreover, the introduction of catalase effectively eliminates H2O2 interference, enabling an accurate evaluation of each donor’s efficacy based on electron delivery to the LPMO active site. The introduction of catalase enhances TthLPMO9G’s catalytic efficiency, leading to increased cellulose oxidation. The current study provides deeper insights into specific point mutations, illuminating the crucial role of the second coordination sphere histidine at position 140. Significantly, the H140A mutation not only impacted the enzyme’s ability to oxidize cellulose, but also altered its interaction with H2O2. This change was manifested in the observed decrease in both oxidase and peroxidase activities. Furthermore, the S28A substitution, selected for potential engagement within the His1–electron donor–cellulose interaction triad, displayed electron donor-dependent alterations in cellulose product patterns. Conclusion The interaction of an LPMO with H2O2, electron donors, and cellulose substrate, alongside the impact of catalase, offers deep insights into the intricate interactions occurring at the molecular level within the enzyme. Through rational alterations and substitutions that affect both the first and second coordination spheres of the active site, this study illuminates the enzyme’s function. These insights enhance our understanding of the enzyme’s mechanisms, providing valuable guidance for future research and potential applications in enzymology and biochemistry.

Funder

RESEARCH−CREATE−INNOVATE

Hellenic Foundation for Research and Innovation

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3