Abstract
Abstract
Background
Hydrogen peroxide–acetic acid (HPAA) is widely used in pretreatment of lignocellulose because it has a good capability in selective delignification. However, high concentration (more than 60%) of HPAA increases the cost of pretreatment and the risk of explosion. In this work, alkaline post-incubation was employed to decrease the HPAA loading and improve the saccharification of poplar.
Results
Pretreatment with 100% HPAA removed 91.0% lignin and retained 89.9% glucan in poplar. After poplar was pretreated by 100% HPAA at 60 °C for 2 h, the glucan conversion in enzymatic hydrolysis by cellulase increased to 90.1%. Alkaline incubation reduced the total lignin, surface lignin, and acetyl group of HPAA-pretreated poplar. More than 92% acetyl groups of HPAA-pretreated poplar were removed by alkaline incubation with 1.0% NaOH at 50 °C for 1 h. After incubation of 60% HPAA-pretreated poplar with 1.0% NaOH, the glucan conversion enhanced to 95.0%. About 40% HPAA loading in pretreatment was reduced by alkaline incubation without the decrease of glucose yield.
Conclusions
Alkaline post-incubation had strong ability on the deacetylation and delignification of HPAA-pretreated poplar, exhibiting a strong promotion on the enzymatic hydrolysis yield. This report represented alkaline incubation reduced the HPAA loading, improved pretreatment safety, exhibiting excellent potential application in saccharification of poplar.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
Starting Research Fund from the Nanjing Forestry University
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献