An appraisal on enablers for enhancement of waste cooking oil-based biodiesel production facilities using the interpretative structural modeling approach

Author:

Kukana RajendraORCID,Jakhar O. P.

Abstract

AbstractWith the continuous depletion of energy sources globally and serious concern regarding environmental degradation by the use of fossil fuel, biodiesel may play a key transponder. Biodiesel blended with diesel fuel achieves a decreased environmental footprint without losing the reliability of output and consumption. Biodiesel is produced from a variety of sources. Biodiesel generation from waste cooking oil (WCO) is effective for both the atmosphere and human health. Many research studies reported WCO biodiesel as a potential alternative fuel for internal combustion engine. The present study aims to provide key promoting and implementing agents for WCO utilization and WCO-based biodiesel production. A systematic literature review has been performed to identify enablers and the contextual relationship between various enablers was developed using interpretative structural modeling (ISM) and expert views. Using the method of ISM and cross-impact matrix multiplication applied to classification (MICMAC) methodology, the impact of enablers is studied. The findings revealed that all established enablers play an important role and are equally important promoters for the development of biodiesel based on WCO. The findings further suggest that human health issues, biodiesel processing plants, biodiesel support vehicles, and biodiesel production technology play a key role in the manufacture of biodiesel dependent on WCO. The most important leaders in the development of WCO biodiesel are government policy and funding, confidence in environmental issues, and financial assistance to biodiesel manufacturers.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology

Reference66 articles.

1. World Energy Scenarios: Composing energy futures to 2050. World Energy Council Project Partner Paul Scherrer Institute (PSI), Switzerland.2013.accessed on 08 October 2021. https://www.worldenergy.org/assets/downloads/World-Energy-Scenarios Composing-energy-futures-to-2050 Executive-summary.pdf.

2. Global Energy Review 2021: assessing the effects of economic recoveries on global energy demand and CO2 emissions in 2021. International Energy Agency. 2021. Accessed on 24 September 2021. https://www.iea.org/reports/global-energy-review-2021.

3. Shrigiri BM, Hebbal OD, Reddy KH. Performance, emission and combustion characteristics of a semi-adiabatic diesel engine using cottonseed and neem kernel oil methyl esters. Alexandria Engineering Journal, Alexandria University, Elsevier (Science Direct) 2016;699–706. https://doi.org/10.1016/j.aej.2015.12.023.

4. Joshi G, Pandey JK, Rana S, Rawat DS. Challenges and opportunities for the application of bio-fuel. Renew Sustain Energy Rev. 2017;79:850–66. https://doi.org/10.1016/j.rser.2017.05.185.

5. Chang WR, Hwang JJ, Wu W. Environmental impact and sustainability study on biofuels for transportation applications. Renew Sustain Energy Rev. 2017;67:277–88. https://doi.org/10.1016/j.rser.2016.09.020.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3