Engineering isoprenoids production in metabolically versatile microbial host Pseudomonas putida

Author:

Wang Xi,Baidoo Edward E. K.,Kakumanu Ramu,Xie Silvia,Mukhopadhyay Aindrila,Lee Taek Soon

Abstract

AbstractWith the increasing need for microbial bioproduction to replace petrochemicals, it is critical to develop a new industrial microbial workhorse that improves the conversion of lignocellulosic carbon to biofuels and bioproducts in an economically feasible manner. Pseudomonas putida KT2440 is a promising microbial host due to its capability to grow on a broad range of carbon sources and its high tolerance to xenobiotics. In this study, we engineered P. putida KT2440 to produce isoprenoids, a vast category of compounds that provide routes to many petrochemical replacements. A heterologous mevalonate (MVA) pathway was engineered to produce potential biofuels isoprenol (C5) and epi-isozizaene (C15) for the first time in P. putida. We compared the difference between three different isoprenoid pathways in P. putida on isoprenol production and achieved 104 mg/L of isoprenol production in a batch flask experiment through optimization of the strain. As P. putida can natively consume isoprenol, we investigated how to prevent this self-consumption. We discovered that supplementing l-glutamate in the medium can effectively prevent isoprenol consumption in P. putida and metabolomics analysis showed an insufficient energy availability and an imbalanced redox status during isoprenol degradation. We also showed that the engineered P. putida strain can produce isoprenol using aromatic substrates such as p-coumarate as the sole carbon source, and this result demonstrates that P. putida is a valuable microbial chassis for isoprenoids to achieve sustainable biofuel production from lignocellulosic biomass. Graphical Abstract

Funder

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3