Integrative transcriptome and proteome analyses of Trichoderma longibrachiatum LC and its cellulase hyper-producing mutants generated by heavy ion mutagenesis reveal the key genes involved in cellulolytic enzymes regulation

Author:

Dong Miaoyin,Wang Shuyang,Xu Fuqiang,Xiao Guoqing,Bai Jin,Wang Junkai,Sun Xisi

Abstract

Abstract Background The major challenge of facing the efficient utilization of biomass is the high cost of cellulolytic enzyme, while the Trichoderma longibrachiatum plays an essential role in the production of industrial enzymes and biomass recycling. Results The cellulase hyper‑producing mutants of LC-M4 and LC-M16 derived from the wild type T. longibrachiatum LC strain through heavy ion mutagenesis exhibited the high-efficiency secretion ability of cellulase and hemicellulose. The FPase activities of LC-M4 (4.51 IU/mL) and LC-M16 (4.16 IU/mL) mutants increased by 46.91% and 35.5% when compared to the LC strain, respectively. Moreover, these two cellulase hyper-producing mutants showed faster growth rate on the cellulosic substrates (Avicel and CMC-Na) plate than that of LC strain. Therefore, an integrative transcriptome and proteome profiling analysis of T. longibrachiatum LC and its cellulase hyper‑producing mutant LC-M4 and LC-M16 were employed to reveal the key genes involved in cellulolytic enzymes regulation. It was showed that the transcriptome and proteome profiles changed dramatically between the wild strain and mutant strains. Notably, the overlapped genes obtained from integrative analysis identified that the protein processing in ER involved in protein secretory pathway, starch and sucrose metabolism pathway and N-glycan biosynthesis pathway were significantly changed both in cellulase hyper-producing mutants and thereby improving the enzyme secretion efficiency, which maybe the main reason of cellulase hyper-production in LC-M4 and LC-M16 mutants. In addition, the three DEGs/DEPs (PDI, Sec61, VIP36) related with protein secretion in ER and two DEGs/DEPs (OST, MOGS) related with N-glycan biosynthesis were identified as key candidate genes participating in enzyme protein biosynthesis and secretion. Conclusions In this study, a hypothetical secretory model of cellulase protein in filamentous fungi was established on the basis of DEGs/DEPs and key genes identified from the omics analysis, which were of great guidance on the rational genetic engineering and/or breeding of filamentous fungi for improving cellulase production.

Funder

the National Natural Science Foundation of China

the Cooperation Project of Gansu Academy of Sciences

the Local Cooperation Project of the Chinese Academy of Sciences

the Project of Agricultural Science and Technology of Yunnan Province

the Key Research and Development plan of Gansu Province

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3