In situ carbon dioxide capture to co-produce 1,3-propanediol, biohydrogen and micro-nano calcium carbonate from crude glycerol by Clostridium butyricum

Author:

Wang Xiao-Li,Zhou Jin-Jie,Liu Sheng,Sun Ya-Qin,Xiu Zhi-Long

Abstract

Abstract Background Climate change caused by greenhouse gas emission has become a global hot topic. Although biotechnology is considered as an environmentally friendly method to produce chemicals, almost all biochemicals face carbon dioxide emission from inevitable respiration and energy metabolism of most microorganisms. To cater for the broad prospect of biochemicals, bioprocess optimization of diverse valuable products is becoming increasingly important for environmental sustainability and cleaner production. Based on Ca(OH)2 as a CO2 capture agent and pH regulator, a bioprocess was proposed for co-production of 1,3-propanediol (1,3-PDO), biohydrogen and micro-nano CaCO3 by Clostridium butyricum DL07. Results In fed-batch fermentation, the maximum concentration of 1,3-PDO reached up to 88.6 g/L with an overall productivity of 5.54 g/L/h. This productivity is 31.9% higher than the highest value previously reports (4.20 g/L/h). In addition, the ratio of H2 to CO2 in exhaust gas showed a remarkable 152-fold increase in the 5 M Ca(OH)2 group compared to 5 M NaOH as the CO2 capture agent. Green hydrogen in exhaust gas ranged between 17.2% and 20.2%, with the remainder being N2 with negligible CO2 emissions. During CO2 capture in situ, micro-nano calcite particles of CaCO3 with sizes in the range of 300 nm to 20 µm were formed simultaneously. Moreover, when compared with 5M NaOH group, the concentrations of soluble salts and proteins in the fermentation broth of 5 M Ca(OH)2 group were notably reduced by 53.6% and 44.1%, respectively. The remarkable reduction of soluble salts and proteins would contribute to the separation of 1,3-PDO. Conclusions Ca(OH)2 was used as a CO2 capture agent and pH regulator in this study to promote the production of 1,3-PDO. Meanwhile, micro-nano CaCO3 and green H2 were co-produced. In addition, the soluble salts and proteins in the fermentation broth were significantly reduced. Graphical Abstract

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3