Composition and yield of non-cellulosic and cellulosic sugars in soluble and particulate fractions during consolidated bioprocessing of poplar biomass by Clostridium thermocellum

Author:

Biswal Ajaya K.,Hengge Neal N.,Black Ian M.,Atmodjo Melani A.,Mohanty Sushree S.,Ryno David,Himmel Michael E.,Azadi Parastoo,Bomble Yannick J.,Mohnen Debra

Abstract

Abstract Background Terrestrial plant biomass is the primary renewable carbon feedstock for enabling transition to a sustainable bioeconomy. Consolidated bioprocessing (CBP) by the cellulolytic thermophile Clostridium thermocellum offers a single step microbial platform for production of biofuels and biochemicals via simultaneous solubilization of carbohydrates from lignocellulosic biomass and conversion to products. Here, solubilization of cell wall cellulosic, hemicellulosic, and pectic polysaccharides in the liquor and solid residues generated during CBP of poplar biomass by C. thermocellum was analyzed. Results The total amount of biomass solubilized in the C. thermocellum DSM1313 fermentation platform was 5.8, 10.3, and 13.7% of milled non-pretreated poplar after 24, 48, and 120 h, respectively. These results demonstrate solubilization of 24% cellulose and 17% non-cellulosic sugars after 120 h, consistent with prior reports. The net solubilization of non-cellulosic sugars by C. thermocellum (after correcting for the uninoculated control fermentations) was 13 to 36% of arabinose (Ara), xylose (Xyl), galactose (Gal), mannose (Man), and glucose (Glc); and 15% and 3% of fucose and glucuronic acid, respectively. No rhamnose was solubilized and 71% of the galacturonic acid (GalA) was solubilized. These results indicate that C. thermocellum may be selective for the types and/or rate of solubilization of the non-cellulosic wall polymers. Xyl, Man, and Glc were found to accumulate in the fermentation liquor at levels greater than in uninoculated control fermentations, whereas Ara and Gal did not accumulate, suggesting that C. thermocellum solubilizes both hemicelluloses and pectins but utilizes them differently. After five days of fermentation, the relative amount of Rha in the solid residues increased 21% indicating that the Rha-containing polymer rhamnogalacturonan I (RG-I) was not effectively solubilized by C. thermocellum CBP, a result confirmed by immunoassays. Comparison of the sugars in the liquor versus solid residue showed that C. thermocellum solubilized hemicellulosic xylan and mannan, but did not fully utilize them, solubilized and appeared to utilize pectic homogalacturonan, and did not solubilize RG-I. Conclusions The significant relative increase in RG-I in poplar solid residues following CBP indicates that C. thermocellum did not solubilize RG-I. These results support the hypothesis that this pectic glycan may be one barrier for efficient solubilization of poplar by C. thermocellum.

Funder

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3