Abstract
Abstract
Background
The development of renewable and sustainable biofuels to cover the future energy demand is one of the most challenging issues of our time. Biohydrogen, produced by photosynthetic microorganisms, has the potential to become a green biofuel and energy carrier for the future sustainable world, since it provides energy without CO2 emission. The recent development of two alternative protocols to induce hydrogen photoproduction in green algae enables the function of the O2-sensitive [FeFe]-hydrogenases, located at the acceptor side of photosystem I, to produce H2 for several days. These protocols prevent carbon fixation and redirect electrons toward H2 production. In the present work, we employed these protocols to a knockout Chlamydomonas reinhardtii mutant lacking flavodiiron proteins (FDPs), thus removing another possible electron competitor with H2 production.
Results
The deletion of the FDP electron sink resulted in the enhancement of H2 photoproduction relative to wild-type C. reinhardtii. Additionally, the lack of FDPs leads to a more effective obstruction of carbon fixation even under elongated light pulses.
Conclusions
We demonstrated that the rather simple adjustment of cultivation conditions together with genetic manipulation of alternative electron pathways of photosynthesis results in efficient re-routing of electrons toward H2 photoproduction. Furthermore, the introduction of a short recovery phase by regular switching from H2 photoproduction to biomass accumulation phase allows to maintain cell fitness and use photosynthetic cells as long-term H2-producing biocatalysts.
Funder
Biotieteiden ja Ympäristön Tutkimuksen Toimikunta
NordForsk
Maj ja Tor Nesslingin Säätiö
Magyar Tudományos Akadémia
Koneen Säätiö
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献