Author:
Tang Wei,Wu Xinxing,Huang Caoxing,Ling Zhe,Lai Chenhuan,Yong Qiang
Abstract
Abstract
Background
Humic acids (HA) have been used in biorefinery process due to its surfactant properties as an aid to the pretreatment of lignocellulose, with results indicating a positive effect on delignification. However, the HA remaining on the surface of the pretreated lignocellulose has also been shown to provide a negative effect on ensuing enzymatic digestibility. Hence, a strategy of complexing metallic cations with HA prior to enzymatic hydrolysis was proposed and demonstrated in this work in an effort to provide a means of HA mitigation that does not involve significant water consumption via extensive washing.
Results
Results showed that the enzymatic hydrolysis efficiency of waste wheat straw decreased from 81.9% to 66.1% when it was pretreated by 10 g/L HA, attributed to the inhibition ability of the residual HA on enzyme activity of cellulase with a debasement of 36.3%. Interestingly, enzymatic hydrolysis efficiency could be increased from 66.1% to 77.3% when 10 mM Fe3+ was introduced to the system and allowed to associate with HA during saccharification.
Conclusions
The addition of high-priced metallic cations (Fe3+) has successfully alleviated the effect of HA on cellulase activity. It is our hope in demonstrating the complexation affinity between metallic cations and HA, future researchers and biorefinery developers will evaluate this strategy as a unit operation that could allow economic biorefining of WWS to produce valuable biochemicals, biofuels, and biomaterials.
Funder
National Natural Science Foundation of China
Priority Academic Program Development of Jiangsu Higher Education Institutions
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献