Abstract
Abstract
Background
The use of thermotolerant yeast strains can improve the efficiency of ethanol fermentation, allowing fermentation to occur at temperatures higher than 40 °C. This characteristic could benefit traditional bio-ethanol production and allow simultaneous saccharification and fermentation (SSF) of starch or lignocellulosic biomass.
Results
We identified and characterized the physiology of a new thermotolerant strain (LBGA-01) able to ferment at 40 °C, which is more resistant to stressors as sucrose, furfural and ethanol than CAT-1 industrial strain. Furthermore, this strain showed similar CAT-1 resistance to acetic acid and lactic acid, and it was also able to change the pattern of genes involved in sucrose assimilation (SUC2 and AGT1). Genes related to the production of proteins involved in secondary products of fermentation were also differentially regulated at 40 °C, with reduced expression of genes involved in the formation of glycerol (GPD2), acetate (ALD6 and ALD4), and acetyl-coenzyme A synthetase 2 (ACS2). Fermentation tests using chemostats showed that LBGA-01 had an excellent performance in ethanol production in high temperature.
Conclusion
The thermotolerant LBGA-01 strain modulates the production of key genes, changing metabolic pathways during high-temperature fermentation, and increasing its resistance to high concentration of ethanol, sugar, lactic acid, acetic acid, and furfural. Results indicate that this strain can be used to improve first- and second-generation ethanol production in Brazil.
Funder
Fundação de Amparo à Pesquisa do Estado de São Paulo
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献