Metabolic shift towards increased biohydrogen production during dark fermentation in the anaerobic fungus Neocallimastix cameroonii G341

Author:

Stabel Marcus,Haack Karoline,Lübbert Hannah,Greif Meike,Gorenflo Pascal,Aliyu Habibu,Ochsenreither Katrin

Abstract

Abstract Background Anaerobic fungi of the phylum Neocallimastigomycota have a high biotechnological potential due to their robust lignocellulose degrading capabilities and the production of several valuable metabolites like hydrogen, acetate, formate, lactate, and ethanol. The metabolism of these fungi, however, remains poorly understood due to limitations of the current cultivation strategies in still-standing bottles, thereby restricting the comprehensive evaluation of cultivation conditions. Results We describe the analysis of growth conditions and their influence on the metabolism of the previously isolated fungus Neocallimastix cameroonii G341. We established a bioreactor process in a stirred tank, enabling cultivation under defined conditions. The optimal growth temperature for the fungus was between 38.5 °C and 41.5 °C, while the optimal pH was 6.6–6.8. Like other dark fermentation systems, hydrogen production is dependent on the hydrogen partial pressure and pH. Shaking the bottles or stirring the fermenters led to an increase in hydrogen and a decrease in lactate and ethanol production. Regulation of the pH to 6.8 in the fermenter nearly doubled the amount of produced hydrogen. Conclusions Novel insights into the metabolism of Neocallimastix cameroonii were gained, with hydrogen being the preferred way of electron disposal over lactate and ethanol. In addition, our study highlights the potential application of the fungus for hydrogen production from un-pretreated biomass. Finally, we established the first cultivation of an anaerobic fungus in a stirred tank reactor system.

Funder

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3