Heterologous expression and characterization of novel GH12 β-glucanase and AA10 lytic polysaccharide monooxygenase from Streptomyces megaspores and their synergistic action in cellulose saccharification

Author:

Qin Xing,Yang Kun,Zou Jiahuan,Wang Xiaolu,Tu Tao,Wang Yuan,Su Xiaoyun,Yao Bin,Huang Huoqing,Luo Huiying

Abstract

Abstract Background The combination of cellulase and lytic polysaccharide monooxygenase (LPMO) is known to boost enzymatic saccharification of cellulose. Although the synergy between cellulases (GH5, 6 or 7) and LPMOs (AA9) has been extensively studied, the interplay between other glycoside hydrolase and LPMO families remains poorly understood. Results In this study, two cellulolytic enzyme-encoding genes SmBglu12A and SmLpmo10A from Streptomyces megaspores were identified and heterologously expressed in Escherichia coli. The recombinant SmBglu12A is a non-typical endo-β-1,4-glucanase that preferentially hydrolyzed β-1,3-1,4-glucans and slightly hydrolyzed β-1,4-glucans and belongs to GH12 family. The recombinant SmLpmo10A belongs to a C1-oxidizing cellulose-active LPMO that catalyzed the oxidation of phosphoric acid swollen cellulose to produce celloaldonic acids. Moreover, individual SmBglu12A and SmLpmo10A were both active on barley β-1,3-1,4-glucan, lichenan, sodium carboxymethyl cellulose, phosphoric acid swollen cellulose, as well as Avicel. Furthermore, the combination of SmBglu12A and SmLpmo10A enhanced enzymatic saccharification of phosphoric acid swollen cellulose by improving the native and oxidized cello-oligosaccharides yields. Conclusions These results proved for the first time that the AA10 LPMO was able to boost the catalytic efficiency of GH12 glycoside hydrolases on cellulosic substrates, providing another novel combination of glycoside hydrolase and LPMO for cellulose enzymatic saccharification.

Funder

National Natural Science Foundation of China

China Agriculture Research System of MOF and MARA

National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3